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I.i BAS]C CONCEPTS Or FUZZY SElIlS

This section introduces some of the basic concopts and tenlinorogv of ruzzy sets. .fo

illust.ate some of the concepts, rve consider. the membersrrip grades of the elements of a smari
universal set in four different ruzzy sets as irsted in Tabre 1.2 and graphicaly expresseo in fig.
1..l Here the crisp universal set X ofages that we have selected is table 1.2
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able 1.2 les of Sets
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If the o th6 set set A is less than

or equal its membership grade in fuzzy set B. Thus, if
pe(x)spn(x),

for every xeX, then

AeB.
The fuzzy set old from Table 1.2 is a subset of the fuzzy sei a;!ui;" since for each elemcnt in our

universal set

P"ra (x) < !r 
"aurt(x).

Fuzzy sets A and B are called equal il l:A(xFpB(x) for every element xeX. Ihis is

denoted by

A:8.
Clearly, if A=8, then AcBand B_cA.

If fi.zzy sets A and B are not equal (pA(x)*pB(x) for at leasa ,ne x e X), we write

A*8.
None ofthe four fuzzy sets defined in Table 1.2 is equal to any of the cthbrs.

Fuzzy set A is called a proper subset of fuzzy set B when A is a subsct ofB and the two

sets are not equal; that is, pa(x) < pn(x) for every xeX and pA(x)<pB(x) for at least one xeX.
We can denote this by writing

AcB if and only ifAcB and A*B.
It was mentioned that the fuzzy set old from Table 1.2 is a subset of the fuzzy set adult and th:t
these two fuzzy sets are not equal. Th:refore, old can be said to be a propcr subset of.adult.

When membership grades range in tho closed intewal between 0 and 1, nle denote the

complemenl of a fuzzy set will.rrespect t: the univenal set X by A an I definc i;by
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lre(x) *l-pa-(x),

for every x€X. Thus, if an element hag a membership grade of .g in a fu2ry set A, its
membership grade in the complement of A will be .2. For instance, taking the complement of the
fuzzy set old from Table 1.2 produces the fuzzy set not old defined as

not old - 7 I 5+t / t0+.9 /20+.8/30+.6/ 4A+.4/ 50+.2t 60.

x : {5, I 0,20,30,40,50,60,70,s0},

and the fuzzy sets labeled as infant, adults young and old are four of the elements of the power
set contaidng all possible fuzzy subsets cf X, which is denoted by p(X).

The support of a fiiz.zy set A in the universal set X is the crigp set they contains all the
elements of x that have a nonzero membership grade in A. That is supports of fnzzy sets in x
are obtained by the function

Supp : P(X) ->Pfi),
where

suppA= {x€ X lpa(x){}
For istance, the support of the fuzzy set young from Table 1.2 is the crisp set

' supp (young): {5,10,20,30j0,50}
Al empty fuzzy set had an empty support; that is, the membership function assigns 0 to all
elements of t'e universat set^ The firzzy set infants as defined in Table 1.2 is one example ofan
empty finzy set within the chosen universe.

. [€t us introduce a special notation that is often used in the literature for defining frrzzy
sets with a finite support. Assume that xi is an element of the support of fwzy set A and that pi
is its grade of membership in A. Then A is written as

. A: Ftlxl +p2lxt+......+pr/xi,
where the slash is employed to link the elements of the support with their grades of membership
A and the plus sign indicates, rather than any sort oftho algebraic addition, that the 1istcd pairs of
elements and membership grades collectively form the definition of the set A. For the case in
whrch a fuzzy set A is defined on a universal set that is finite and coutable, we may write

A=._,E"pa/x;.
Similarly, when X is an interval of real numbers , a fuzzy set A is often written in the form

A:J,Pa(x/x
The height of a fuzzy set is the largest membership grade attained by any clcment in that

set. A fu7ry set is callod normalized when at least one of its elcments attains the maximum
possible nernbership gade. If nrernbership grades range in the closed interval between 0 and 1,
for instance, then at least one element must have a membership grade of I for lhe fi.rzzy set to be
considere I normalized.
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1.2 MATIIEMATICAL MODELING

The mathematical modeling of fuzzy concepts was presented by Zade\ in 1965. His

contention is that meaning in natural language is a matter of degree. If we have a proposition

such as "Joln is young', then it is not always possible to assert that it is either true or false.

When we lnow that John's age is x, then the 'truth", or more correctly, the "compatibiliti/'olx
with 'ts young", is a matter of degee. It depends on our understanding of the concept 'Young".

If the proposition is "John is under 22 years old" and we know john's age,then we can give a

yes or no answer to whether the proposition is true or a bit by oonsidering possible ages to be

the interval (0,cc),letting A be the subset {x:x €(0,cc):x<20},and then determining whether or

not John's age is in A. But')oung" cannot be defined as an ordinary subset o(0,0c).zade1, was

l:d to the notion of a fuzzy subset. Clearly ,i8 and 20 year olds are young, but with dillerent

degrees: 18 is younger than 20. This suggests that membership in a fuzzy subset should not be

on a 0 or I basis, but rather on a 0 tol scale, that is, the membership should be an element of
the interval [0 ,1]. T\is is handled as follows. An ordinary subset A ofa s€t U is determine4 by

its indicator function, or characteristic function xr defined by

xn(x) = {i ifxeA
{ 0 ifxeA

The indicator function ofa subset A of a set U specifies whether or rot an element is in

A. It either is or is not. There are only two possible values th: indicator function can take. This

notion is generalized by allowing images of elements to be in the intsrval [0,1]. rather than

being restricted to the tlvo elements set {0,1}.
Definition l A fuzzy subset of a set U is afunclions U-+[0,eJ.

Those functions whose images are contained in the two elsment set {0,1 } correspond to

ordinary. or crisp subsets of U, so ordinary subsets are special cases of fuzzy subsets. A

specific fi.rnction U+[0,1J representing this notion v/ould be denoted p,r.

For a fuzzy set A: U+[0,l],the function A is called the membprship function, and the

value A(p) is called the degreo of membership of p in xhe fuzzy set A. It is not meant to convey

the likelihood or probability that p has some particular attribute

Of course, for a fuzzy concept, different functions, A can be considered. The chcrice of
the function A is subjective and context dependent and can be a delicate one. But the'flexibility

in the choice ofA is usefirl applications, in fuzzy control.

Here are trvo examples of how cne migh: model the fi:zzy conce,pt'?oung". l.et the set of
all possible ages of people be the positive real numbers. One such model, decided upon by a

teenager might be



M.S.University D.D_C.E. I M.Sc., Matbs

Y(x) ={ I if x<2s

{ 40-x/15 if 25 < x<= 4O

{ 0 if40<x

T.3 SOME OPERATIONS ON FUZZY SETS

A subset A of a set U can be represented

x r,'U ->{0,1}, and a fuzzy subset of U has been defined

A'U->{0,1}. On the set p(I, of all subsets of U there are the familiar

intercection, and complement. These are given by the rules

bya
tobea
operations

function

function

of union,

AUB= {x: x€A or x€B}

41'19- {x: xeA and\ee}
A'= {x€u;\€A}

, Operations between fuzzy sets : Co$ider the two fuzzy sets A(x) and B(x) of the

ndmegative real numbers by the formulas

A(x): { I if x<20

{ 4Gx/20 if 20< x<40

{ 0 if 40<x

and

B(x) = t,,r,l-rrr,r' tfi?,.
_----5--

Here are the plots of these two membership functions,

1.4 Flzzn'rss As UNcERTATNTy

Fnz"y setr deal with the type of uncertainty that arises when the boundaries of a class of
objects are not sharply defined. The modeling of ftnzy concepts by fuzz'1 sets leads to the

possibility of giving mathematical meaning to natual language statements. For example , when

modeling the concept "young" as a fuzzy subset of [O,co] with a manbership function A:

[0,co)-r[0,1], we described the meaning of 'loung' in a mathematical way. It is a funotion, and

can be manipulated mathematiclly and combined with other functions.

There is a more formal relation between randomness and fuzziness. Let

A :U-r[0,1] be a tuzzy set. For u€[0,1], let A,={u€U:A(u):d}. The set Ao is called the u-cut <if

A. Now let us view ct as a random variable uniformly distributed on [0,1]. That is, Iet (O,A,P)

be a probability space and ot : C)-+R a random variable with
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P{(D:d((D)Sa}={0ifa<0

A if05a51

lifP1
Then Ao (o) is a random set.

Example :- suppose that the illness under consideration is manifested as zubsets of the set

O ={ (D r, {D 2,..., ro,} of possible symptoms. Let U be a set of humans, and let
S : + p(U) be given by S(to) -{u€A :u has symptom rr.' }. For ueu, v..e are interested in some
numerical measure of the set { o €Q :u€s(<o)}. This'is to be a measure of the seriousness of the

illness of u. Medical experts often can provide assessments which can be described

mathematically as a lunction u: P(o)-+[0,1], where p(B) is the degree of seriousnsss of the
illness of a person having all the symptoms in B. so a membership function can be taken to be

A (u)= tr{ rrr €Q : u€s(co)}

Since p is subjective, there is no compelling reason to assume that it is
a measurc.

I.5 SOME ALCEBRA OF FUZZY SETS

1,5.1 Boolean algebras and lattices
Definilion : A relation on a set U is a subset R of the cartesian product U xU .

The notion of relation is very general oae. For an element(x, y) tU x U either(x, $eR or
it is not.

The ielation C satisfies the following properties.

A c A(the relation reflexive)

If A qB and B c C then ASC.(the relation is transitive)
If A.c B and B c A, then A: B.(the relation is antisymmetric)

A partial order on a set is a relation on that set that is reflexive ,transitive and
zrntislmmetric.

Definirion: A parlially ordered set is a pair{u,1)where u is a set and 3 is a partial order on U.
Definition: A lattice is a partially ordered set (u,5)in which every pairiof elements of u has a
sup and an inf in U.

Chains are always lattices. The partially ordored set (p@, c )is a lattice. The sup of two
elements in P[LI) istheir union, and the inf is their intersection .The interval[0,1]is a lattice,
being a chain.

l.emma: 1.5,2 If (U, 5)is a lattice, then for all a, b, ce U,
1. aVa=aand a A a = a ( V and A are indempotent.

2. aVb=bVa and a.nb=b A a(V and A are commutative)
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3. (aVb)Vc=aV(bVc) and (a A b)Ac= aA(bAc). ff and are associative).

4. aV (a A b) : a and aA(avb) =e These are the absorption identities).

Theorem : .1.5.3 if U is a set with binary operations V and A which satis$ the properties of

Lemma 1.5.2, then defining a 3 b if a^b = a makos (U, S) into a lattice whose sup and in

operations are V and^.

Pmof. We fint show that a n b:a lf and only if a V b-b. Thus defining a<b if a-Ab:a is

equivalent to defining a<b if a V b*. Indocd; if aAb=4 then a\/b{aAb) V b=b by one of the

absorption laws. Siririlaly, if aVb=b, theri aab=d.We show the exislence of sups, and claim that

. sup {a"b}=aVb. Now a-<aVb since an (aVa):a by one of the absorption laws. Similarly

b(bVa=aVb, so that avb is an upper bound of a and b. For any other upper tround x,a=a,rx and

b:bAx, whence x = aYx = bVx. Therefore, x=aVxAb a:(avb)V x, and so a\rbSx. Thus

aAb:sup{a,b}, Hence, the proof follows.

The lattice (i0,1],<) plays a fundamental role. It is a bounded distributive lattice.

lt is not complenented. For x,ye[0.1], xVy: sup{x.y}= max{x,y}, and similarly x A 1"=inf{x,y}.

Distributivity is easy to oheck. This lattice has another important operation on it.

[0,1]-+[0,1]:x-]1-x. We denote this operation by ' even though it is not a complemant.The

operation hgs the following properties

(x')' = x

x5y implies that y'<x'

such rn operation on a bounded lattice is called an involution, or a dualitV. trt follows that

. 'is one-to-one and onto, and that 0'=1 and 1'={. Ifis an in-rolution, the equations

(x V Y)' = *'A Yt

(xA Y;'= *lY tt
. are called the De Morgan laws-

Theorem : 1,5.4

Let (VJ; A,',0,1) b€ aDe Morgan algebra and let ubeanyset. lrt/ and

g be mappings ftom U and V. We defiae

1, /VeXx)=/(x)ve(x)
2.( frt g(x)= ! (x) A g(x)

3. /'(x){ / (x)) t

4'0(x)=6

s'l(x)=1

I
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let V
U(V ,4, ,',0,1) is a De

be the set of all mappings from U into V. Therr

Morgan algebra. If V is a complete lattice, then so is Vt'
Proof :

The proof is routine in all respects. For example, the fact that V .is an associativc
IJ

operation on V comes directly from the fact that V is associate on v. (the two Vs are different

of course) Using the definition of vu and that v is associate on v ,we get

(f v(g v h)xx) 
: 11,:1il1H*,,
= (f(x) v g(x) ) v hrx )

: (fv g)(x) v h(x)
: ((fv g) v hxx).

Whencefv(gvh)=(fvg)vhandsoVisassociativeonVuandhencedircctlyprooffollcws.

Corollary 1,5,5

(u),v,zt ,r,0,t) is a complete De Molgan algebra.

I,6 EQUIVALENCE REI,ATIONS AND PARTITIONS

Definition : A rclation -on a set U is an equivalence relation if for all a, b and c in U.

tl ) a-6

(2) a-b impiics b-a" and

(3) a-tr,b-c imply that a-c.

The {irst and third conditions rve recognize as reflexivity and transitivity. The

second is that of symmetry. Thus an equivalence relation is a relarion that is

reflexive. symmerfric and transitive.

Defidtiott; Let * be an equivalence relation on a ser U and let aeU.The

equivalence class ofan elcmellt a is the set [a]={ueU:u-a},
Definilion: Let U be a nonempty set.A parrition of U is a set of nonempty

pairwise disjoint subsets ofU whose union is U.

!heoyen:1.6.1
Let - be an equivalence relation on the set U.Then the set of equivalence classes of - is

a partition of U.This association of an equivalence relation - with the partition consisting of the

equivalence classes of - is a one-to-one correspondence between the set of equivalence relations

on U and the set ofpartitions ofU.
Proof : The union of the equivalence classes [u] is U since u t[u].We need only that tvo
equivalence classes be equal or disjoint. lf x e [U] n[V] iv],then x-u,x-u and so u-x and

x.-v.By transitivity that u ^, v. Ify e [u], then y -- v and so u-x and x- v.It follows y*v.Thus y

e[v],This means that {u} q [V]. Similarly, [v]g[u] and hence [u] : [v]. So if two equivalence
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classes are not disjoint they aro equal. Therefore the equivalence classes from a partition. Notice
thal two elements are equivalence are equivalent if and only if they are in the same member of
the panition. that is in the same equivalence class. So this map from equivalence relatlons to
partitions that one-to-one. Given a pariilion declaring two elements equivalent if they are in the
same member of the partition that is, in the same equivalence class. So the map from
equivalence relations to partitions is onto.

Theorem : Let e ({J) be the set ofatl equivalence relations on the set (J. Then

(a(U), d is a complete lattice.

Proo"f : There is a biggest and smallest element of e(U), namely UIU and {(u,u): u €U},
respectively. Wc have to show that any nonempty familyfEi : I € If of elements of e(U) has a

sup and inf. Now certainly A {Ei:i€Ii: C) I Ei if n.., E is an equvalence relation. Let (u.v) and

1v,w) € n..1 E. Then (u,v) and (v,w) belong to each E i and hence iu,rv) belongs to each E;.

Therefore, (v,w) € A.u, 8.. Thus n;n; is a transitive relation on U. That n Ei is reflexive and

sl, nmetric is similar. what we have shown is that the intersection or *y riinity of equivalence
relations on a set is an equivalence rclation on that set, This is clearly the infofthat family. Now
V JEi: i € Ii of a family of equivalence relations on U is

n{E € (LD : E: Ei for all i € Il
Note that UxU is an equivalence containing atl the Ei. This intersection is an equivalence

relatiott on U and it is clearly the least equivalence relation containing all the Ei. Therelore it is
the desired sup.

l'? coMlosING 
T:fi:", V) w" rhen g o f , or more simply gr, is the mapping U) w

defined by (g0 (u)-g((u)). This is called lhe composition of the mappings f and g. Any two
fi.rnctions ofa set into itself can be composed. The firnction f: U) U such thar f(u)=u 15r 

"tt 
u ,t

denoted by IiJ and is called the identity function on u. The se! ofall functions from u to V is
denoted mapflJ,V),or by V

A mapping A: U*L induces a mapping A : p(u))P(L). So with a sub ser X of U. A(X)
is a subset of L. But since L is a complete lattice. We may take thc sup of A(X). This sup is
denoted V(AQ(). One should view V as a mapping p(L) ) L. The composition V A is a

mapping P(J)) L,namcly the mapping given by

, Pfl, A;,P(L) v >1
ln particular, a fuzzy subset of {J yields a fuzzy subset of p(U).

For sets U and V, a subset of UxV is called a relation in UxV. Now a relation R in UxV
induces a mapping R"r:!)P(tf givcn by-\

R-r1v1= {u: (u, v) €R}

10
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Thus rvith A: U)L we havc the mapping

v R-' - 
p(u) o 

_p1L; 
u 

_L------>

Thus the relation R in UxV associates wrth a mapping A: U)l_ a mapping V nR.r: V)
L. This mapping rs sometimes dcnoted R(A). When L:[0, I ], rve then .have a mapping
F(u))F(v) sending A to R(A)=vAR-r. If R is achrally a funcrion from u to v, rhen R has beerr
extended to a function rru)) F(v) sending A to VAR'r. ln fuzzy set theory, this is callctl
extens ion principle.

1.8 tsoMoRpHIS[ts AND EoMoMoRpHrsMs
The mapping (x) : x+l is an order isomorphism from [0,1]to [1,2]. A mapping g

:U)V such that g(x)S g0) rvhenever x5y is called homomorphism, or an order
homomorphism, cmphasizing that thc order relation is being respccted. The conditiol on g that
if x 5y then g(x)5g(y) is expressed by saying that g preserves order or is order preserving.
A mappi'g f : u)v is an isomorphism of two lattices if f is one- to -one and onto. i{x v
y):(x) v (y) and f(xny)= f(x)nf(y). That is, f rnust be one-ro-one and onro and preserv,e both
lattice operations. If the one-to-one anc onto conditions are dropped. then i is a lartice
homcmorphism. If U and V are complete lattices, then an isomorphism f : Ll)V rs a ccmplete
lattice homomorphism if and only if f (VS) = V{(s):S €S} and (as):n {f(s):s €S} ior every
subset S of U. An isornorphism of a lattice(or any algebraic structure) with itself is called an
automorphism.
Example:

consider the lattice([0, 1] ,v,,r,')with involution, where v is sup, n is in{ and x'-1-x,anil
the lattice {0,1/2,1 }with the same operations, Then the mapping f:[0,r]){0,r/2,1} thar sends
endpoints to endpoints and the interior points of[0,1]to % is a homomorphism. Note lhat one
requirement is that f(x')=f(x)',and that this does hold.

Suppose that i U)V is a homomorphism from a lattice(U,V.n) to a lattice(V,v,n), Then
therelation-onUbya-biff(a):f(b)isanequivalencerelation.Butalsoifa"'bandc-dthen
f(aV c)=(a) V f(c):f{b) V f(d)=f(b V d), so a v c and c - d. Similarly a,rc.^.bnd, So rhis
equivaience relation has these two additional properties :if a -' b and avc - bVri and anc * bnd.
Such an equivalance relation on a lattice is called a congnuence. And congruences on lattices
give rise to homomorphrsms.

1.9 ALPEA-Curs

Definition:-

Let U be a set, let C be a pa ially orderded set and
a eC , the (r.-cut of A, or the alevel set of A. is Atfl@:{ueU : A(u)> a}.
be denored by Ao

let A: UlC. For

This subset of U will

ll
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Thus the c!-cut of a function A: U)C is the subset A,:A ! (ta)of U, and we have onc

such subset for each ct,€C. A fundamental fact about the cr-cuts, A(t is that they determine . It

follows immcdiately ffom the equation

A-r14.1 = A'n ('-'Al)'
B>a

Rcsult :

. t et A anrl B be a mappings from a set {.i into a partially ortlerded set C. If A.:B"for alt

s- eC, rcn A --R.

Thcoren : 1 .9.1

Let C be a complete huile and IJ a set. Let F(U) be the sel of all mappings front {J into

C, and L(U) be the set of all mappings g: C)P(U) such that the diagram given below commutes

or equivalently such that for all subsets D oJ'C,

.cv

2r Y-- r
1'J.D

g(vD):n g(dJ
deD

Then the mappinT I : F(q)Lftl) gtven by <p(A):A't lis one-to-one and onto.

Proaf.

We have already obsewed that $ maps F(t, into l(u) and that this mapping is one-to-one.

Le1 g € L{U). We must show that I =A'i for some A€F (O.
For u €U, defile

h(u) : {d €C: s(d): n e(x)}={d € C:u €g(d)}

u€g(x)

Let A=Voh. Then

, n-r11c;:1u€Lr:A(u)>Oi

Noiv if u€g(ci, then g(c)2 n
u€s(*) g(x) rvhich implies that crh(u)

and thus that is eA"r(c).I y(ck A-r . Now suppose that urA-tt(c). Now suppose that ur d"l

f(c), so that A(u)> c. Then u €n,,*(x) g(x)eg(d) for atl deh(u).

Thus u€n g(d): g(A(U))gg(c) i
drA(u)

2

g

t2
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It follows that g(cFA-'t(c),whence g--A-rt+(A).

Corollary :, The complete lattices F(-l) andl(J) are isamorphic.

1.10 IMAGns oF ALPEA.LEVEL SETS

lrt f : u) v and let Abe a fvzy subset of u. Then v Afr is a fuzzy subset of v by the
extension principle. It is the mapping that is the composition.

V -+f-r pGI) o->o110,t11v -+ [0,1]
Theor,-.rrr : 1.10.1

[,et C be a complete lattice, U and V be sets, A: U)C, urd f : U)V. then
i. (Aobff Af-r)cr for all tr € C.

2. I(Ao): (V Af-r)" for cr, >0 if and onlyif for each mernber p of the partition induced by
f ,V A(P) > cr implies A(u) ) a for some u € p.

3. (A.) : (V Aft)o for all cr > 0 if and only if for each mernber p of the partition
induced by f, VA(PFA(u) for some u e p.

Praaf : The theorem follows immediately &om the equatities below.

(A") = {(u):A(uEcr}
= {v€V:A(u)>cr,t{u)=v}

(vAfI)" = {ve v:VAf-t1v;}c[)
= {v€ V: V{A(u) :(u)=v}>a}

One should notice that for some a, it may not be true that VA(p) - a for any p.

EXERCISES

1. l€t u be a set and P(Lf be the set of a[ subsets of u. veri$ in detail that
(P(l),9)is a Boolean algebra" Show that it is complete.

2. Show that a chein with more than two elements is not complemorted,
3. Show that the De Morgan algebra @(J),V,A,',0,1) satisfies AAA' < B V B' for all

A,B e Fru), that is, is a Kleene algebr4 Show that [0,1]is a Kleene algebra. Show that

[0,1]t2l is not a Kleene algebra-

4. l€t .B be a Boolean argebra show that Bt2l is a stone algebra but not a

Boolean algebra

5. Show that if S is a Stone algebr4 then so is St2l

6. Show that every bounded chain is a stonc algebra.

l3
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UI\IIT - II
FVZW QUANTITTES -

LOGICAI A'SPECTS OF FUZZY SETS
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EXERCISE

2.1 Fuzzy quantitie$

Let R denote the set ofreal numbers. The elements ifF{R), that is, the fuery subsets ofR,

areFuzzyquanitities.ArelationRinuxV.whichissimplyasubsetRofuxv.inducesthe
mapping R: (Ilt -+ f{V) clefined by R(A)= VAR- I . This is the mapping given by

R(A)(v) = v {A({u:u'v)eR})}
are expressed by the extension principle at work' In particular, a mapping

f : R-rR induces a mapping f: (R) -r (R). A binary operation o: Rx R+R gives a mapping

fGxR) +f[R), and we have the mapping 4n1 x f[R) -+ f(RxR) sending (A.B) to A(AxB)'

Remember that A (AxBXr,s) = A(r) A B(s). The composition

F@) x F@) -+ F(RxR) -+F(R)

of these two is the mapping that sends (A,B) to V(A(AxB))o't. Where o-r(x) = {(a,b) : aob = x}'

We denote this binary operation by A o B.

This means that

(AoBXx) = VA(AXB) o-' (x)

. ? V-b-- A(AxBXb)

- Vaou-c {A(a) i. eO)}

For example, for the ordinary arithmetic binary operations of addition and multiplication 9n R,

we then have corresponding operatiors A+B = VA(AxB)+-1 and A.B :Vn(AxB)'-' on F(R)'

Thus

( A+B)(z): V -+5" {A(x) A B(Y)}

(A.B)(z): V*--, { A(x) ,t B/Y)}

l4
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The mapping R --+ R : r-+ -r induces a mapping {R) + f(R) and the image of A i. d"no[J-e
For x eR,

CAXx) = v_=-" {A(y)}:A(_x)
lf we view - as a binary operation on R, we get

(A-B)(z) = v,-r=, {A(x) A B(v)}
It tums out that A+(-B) = A-8, as is the case for R itself.

Division deserves some speciar attention. It is not a binary operation on R since it is not
defi,rcd for pairs (x,0), but it is the relation

i((r,s),t) e (RxR) x R: r= stI
By the extension principle, this relation induces rhe binary operation on (R) given by the
fomrula

A,/B(x) = V r^(A(y) A B(z))

Proposition I
For any fuzzy set A, A/x{0} is the constant function whose value is A(0).

Proof. The funcrion fux {o} rs givcn by the formula
(A/x{o})(u) = 

I,=:"118'i;,T,lfi
= A(0)

Theorcm 2 Let o be any binary operation on a set U, and let S and T be subsnts ofu. Then
Tso Tr . T {sot:se s. tc T}

Proof. Foru e U,

1T, o T.,)(u) = V.or = u (T* {s) A T, (t))
The sup is either 0 or l and is l exactry when there is an seS and a t€T with
sot = u. The result follows.
Theorem : 3

Let A, B and C be fuzzy quantities. The following hold.
i. 0+A-A Z. 0.A=0
.1. 1.A=A 4. A+B=B+A
s. A+(B+C)=(A+B)+C 6. AB=BA
7. (AB)C=A(BC) 8. r(A+B):rA+rB
9. A(B+C) < AB+AC 10. (r)A= -(rA)
I l. -(-A): A 12. (-A)B=-(AB) -A(_B)
13. A/1=A A. Nr = 1/r A
14. A/ts=A i/B 16. A+(-B):A-8.

l5
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Proof. We prove some of these. For the equations

A(x) = vy'=' Xlrr 0) A A(z)

= Vt'=, X{i} (1) A A(x)

: A(x)

shorv rliat 1.A=A.. If (A(B+C)X*) t (AB + AC) (x), then there exist u,v,y with y{u+v) = x and'

such thrt

A(y) h B(u) i, C(v) > A(p) A B(q) A C(k)

lor all p,q.h,k with pq + hk = x" But this is nol so forp = h = Y' q : u' and n = k' Thus

{A(B+C)Xx) < (AB+ACXX} for all x, whence A(B+C) < AB+AC'

H,.rwever,

r(A+B) : rA+rB since

(x{r}(A+B)Xx) = V 
".,=* 

(X{r} (u) A (A+B) (v)
: V *=,(X{rXr) A (A+B) (v))

= V 
"+t-, 

*=* (A{s) A B{t))

= v .+r=u 
"=* 

(X{r} (r)A(s} A X {4(r)B(t))

= (1d + rB)(x)

De{l rition A fuzzy quantity A is convex if ils cr-cuts are convex, t}rat is, if its cr'-cuts are

intewals.

Theorem (4) A fuzzy quantity A is convex if and only if A(u) > A(x) A

A(z) whenever x SYSz.

Proof:LetAbeconvex,xsy<z'andcr=A(x)AA(z).ThenxandzareinAcisaninterval'
y is an Aa. Therefore A(y) > A(x) A A(z)'

Suppose that A(y) > A(x) A A(z) whenever x < y < z' Lat x < y < z with

x,z e Atr. Then A(y) > A(xi A A(z) > cr, whenever ye Ao and Aa is couvex'

Definition
A fuzzy quantity A is convex if its g-cuts are convex, thai is , if its a.culs arc intervals.

Thcrorem (5)

,\ fuzzy quantity A is convex if and only if A(y)>A(x) A A(a) r"'henever

S-<S<Z
Proof,

irt A be convex, x<y<z, and s = A(x) A A(z)' The x and z ale in Aa' and since 'An is an

interval, y is in Ao. Therefore A(y) > A(x) A A(z)'

Suppose that A(y) > A(x) A A(z) whenevor x 3y3z' I-nt x<y<z w'ith x'z €A"' Then A(y) >

A(x), u'hence y€A, and A is convex.

Theorem (6)

IfA and B are convex' then so are A+B anti -A

I M.Sc., Matis
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. Proof;

We show that A+B is convex t'el x<y<z. We need that (A+B)

().') > (A+B)A(xXA+BXZ) Lr:t X>0. There are numbers Xr,Xz,Zt and 22 wrth

Xr+ X:: X andZ3Z2= I and satisfying

A(Xr) B(X2) > (A+B)(x)-e

A(z)B(Z)(A+BXZ) -e

Nou,y =:rx +(l-d) z for some d€10,1]. Let xl = axl+(1-u)21 *6 rt:n;r+(1-)z2 then x:+211, xr

lies betrvcen x1 and zr, and z1 lies betrveen x2andz2. Thus wehave

(e+B)(y) > A(x') B(zr)
> A(x 1)AA(zr)AB(xr)AB(z:)
> [(A+ B)(x)-e[(A+B)(z)-e]

> [(A+BXx)A (A t'B)(z)]-e

It follows that A+B is convex.

A furrction f: i{->R is upper semicontinous if {x:f(x)> d} is closed. The following definition is

consistent with this tcrminology.

Definition
A fuzzy quantity is upper semicontinous if its d-cuis a-re r:lrrsr:d.

'theorem (7)

A fuzzy quantity semicontinous ifand only whenever r e R and €>0 there is 6 >0 such

that lx-yl < 6 implies that A(y)<A(x)+e
Proof

Suppose that A" is closed forallo. Letx € R and € >0. If Aq)+ t >1, then A(y)<A(x)+

€ for any y. If A(x) + s<l then for u:A(x)+e, xeAo and so ih€re is 6>0 such that (x-6, x+6)

nA. = q. Thus A(y)<c = A(x)+ e for all y with x-y<.6

Conversely, take u€[0,1], x e A", and C = q-A(x). There is 6>0

2

such that x-y < 6 implics that A(y)<A(x) +

n Ao : 0. Thus Ao is closed.

s-A(x)< d and so (x'6, x+6)

The following theorem is the crucial fact that enables us to use g-cuts in computing with

fuzzy quantities.

Theorem (8)

Let O : RxR->R be a continc rs binary operation on R and let A and B bo fuzzy quantities

with closed a-cuts and bounded supports. hen for each ueR, (AoB)(u)=A(x)nB(y) for some x

and y with u=xoy.

-.i_

.,
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Proof : By definition,
(AoB)(u) =v (A(x) nB(y))

xoy=u
The equality certainly holds if (AoB)(u)=0. Suppose * = (AoB(u)>0, anci A(xii\B(y,1< a icr all x
any y such that there is a sequence {A(x;) B(y;)} i:l in rhe set {A(x) B(y) : xoy:u}having the
lollowing properties.

L {A(x1) B(yi)} converges to cr

2. Eith$ {A(x1) } or B(y,)} converges to s
3. Each x1 is in the support ofA and each yi is in the support of B

Suppose that it is {A(xi) that converges to u . since the support ofA is bounded, the set

{xi} has a limit point x and hence a subsequence converging to x. Since the suppo( ofB is
.bounded, the corrcspondent subsequence of y; has a limit point y and hence a subsequencc
converging to y, The conesponding subsequence of xi converges to x. Thus lve have a
subsequence { {A(xi)AB(l)}1=1 satisffng the three properties above and with i.:;} converging to
x and {yi) corrverging to y. IfA(x) = l< u, then for 6= a+tr and lor sufficiently large i,

x ;€ A;, x is a limil point of those x;. and since all cuts are closed, x€Ai. But it is nor, so Aixi
= d, In a similar vein, B(y) t, cr and we have (AoB){u):A(x) AB(y). Finally, u:xov sincc
u-xioy; for all i, and o is continuous,

Corollary (9)

If A and B are fuzzy quantities with bounded suppo(, all ct-cuts are closed, and o is a
continous binary operation on R, then (AoB)o = ,\oBo.
Proof :

Applying the theorem, for u €(AoB),. (AoBXu) = A(a)AB(y) fbr some x and y with
u=xcy. Thus x€An and y€8, and therefore (AoB)" c A,oBo" The other inclusion can be
r:alculated easily.

Corollary (10)

lfA and B arc fuzzy quantities with bounded support and all q-cuts are closed, then

l.(A+B). = Ao+Bo

2. (A.B), = A,.B"
3. (A-B)d = Ao-Bo

2.2 FI.ZZY NLNItsERS

Definition

A ftrzzy number is a fuzzy quantitl, A that satisfes the fo owing conditions.
L A(x) = I for exactly one x.

2. The support {x: A(xpO} of A is l_rounded.

l8
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3- The o cuts ofA are closed intervals.

Proposition (1)

The foliorving hold:

] . Real numbers are fuzzy numbers.

2. A fuzzy number is a coqvex fuzzy quantity.

3. A fuzzy number is upper semicontinuous.

4. lf A is a fuzzy number wilh A(r) :1, then A is non-decreasing on
(-co,1) and non-increasing on [r,oo).

Proof. It should be clear that real numbers are f,rzzy numbers. A fuzzy number is convex since
rts s-culs are intervals, md is upper semicontinuous since its c[-cuts are closed" If A is fuzzy
number with A (r) = 1 and x < y<r, th€n since A is convex and A(y) < A{r), we have A(x) <
A(y)'so A is monotone increasing on (-co,rl. similary, A is monotone decreasing on [r,co).

Theorcm (2)

lf A and L| are fivzy number then so are A+B,A.B, and -A.
I'roof,

That th*sc iuzzy quantities have boun,led support and assume the value I in exactly one
place is easy to show. The cr-cuts ofA+B and A.B are closed intervals by the last Corollary of
.: ll. Since -A:(-1). the remaining parts follows.
Definition

A triangular fuzzy number is a fuzzy quantity A whose values are given by the formula
A(x): {0, if x<a

x-a if a<x( h

b-a

x-c rf trix< c

b-c

0 if c<x , for some aJ b < c_

Thcorem (3)

For triangular numbers,

(a. b. c) + (d, e, f) = (a+d, b+c, c .r-0

Proof. Using ((a, b, c) + (d, e, 0)o =(a, b, c)a +(d, e, f)cr, it follows that the supporr of the
sum is the interval (a+c', c+f) and that 1 is assumed exactly at b+e. suppose that cr >0, the left
endpoint ofthe cr-cu of (a, b, c)is u and that of(d, g f) is v. Then asu< lr, d< V<e,and

ct= u_a : u-d

b-a e-d

19
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Also. by alegbrical Principle,

a = u+v-(a+d)

b-e (ard)

which shows that u+v is the left endpoint ofthe o-cut of(a+d, b+e,c+f).

But we know that the endpoint of the cr-cut o(a,b,c)+(d,e,f) is u+v. Similarly for right endpoint

ofcuts, and hence (a,b,c) +(d.e,f) and (a+d,b+e,c+0have the same cuts and so equal.

2.3 FUZZY INTERVALS

A subset S ofR is identified with x,, and in particular, interval fa, bl are identified with

their characteristic functions, namely the fuzzy quantities x 16,51.

The use of intervals with their arithmetic is appropriate in some situations involving

impreciseness. When the intervals themselves are not sharply defined, we are driven to the

concept of luzzy interval. Thus we want to generalize intervals to fuzzy intervals, and certainly a

fuzzy quantity generalizing the interval [a, b]. A fuzzy quantity that attains the value I is called

nonnal. The other defining properties of fuzzy irtewals should be like those of fuzzy numbers.

Thus a fuzzy interval should look something like the following picture.

This fuzzy interval has a trapezoidal form representing "approximat6ly between 4 and 6".

Our definition rs this:

Definition

A fuzzy interval is a fuzzy quantity A satisfying thefollowing:

L A is normal

2. The support {x :A(x)>0} ofA is bounded.

3. The a-cuts ofA are closed intervals.

2.4 LOGICAL ASPECTS OF FTJZZY SETS

Any lunction t :V+{0,1} we get a furiction -t :F*>{0,11 as follows: for each

variable a appearing in a formul4 substitute t (a) for it. Then we have an expression in tb€

symbols 0,1,V,n, and ', together with balanced sets of parentheses. The tables below define the

operations of V,n and ' on the truth values {0,1}.
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0

I

0

0

1

1

I

I

0

I

0

0

0

1

0

I

0

1

1

0

Using these tables, which describe the two element Boolean algebra, we get an extensron

to F. For example, ift(a)=O and (b):t(c):l, then

-t((a v b)nc)r(b' 
" o,==[tll?,Ilff]{r"))"i,tri'u 

'r")r

= (lnl)a(0vl)
- lal
:1

Such a mapping F-+{0,1} is called a truth evaluation. We have exactly one for each

mapping V-+{0,1}. Expressions that are assigrred the value 1 by every t are called tautologies

Such as aV a'and bVb'.
There are two other common logical connectives.*(implies) and <+(implies and is

implied by, or if and only if), and we could write down the useful truth tables for them. However,

in clmsical two-valued logic, a=b is taken to mean a' V b, and a<+b to mean (a=$)n(l+a).

Thus they can be defined in terms of three connectives we used. The formula a+b is called

material implication.

Now the set F/=(F "modulo'=) ofall equivalence-classes of this equivalence relation. Let

[a] denote the equivalence class contains the formula a. Then setting

[a]v[b]:[avb]
lal n [b]=[anb]

lul'=[u'J
makes F/= into a Boolean algebra. That these operations are well defined, and actually do that is

claimed takes some checking and we will not give the details. This Boolean algebra is the

classical propositional calculus. If the set V of variables, or atomic formulas, is finite, then F/= is

finite, even though F is infin'ite. It'is a fact that if V has n elements' Then F/= has 22" elements' If
{v1,v2,...,v1} is the set of variables, then the elements of ths form.

W1AW2A .'AW n

Where is either n or u are called elements, and every element ofF is logically equivalent

to the join a unique set of monomials. (The elemenr [0] is the join of the empty set of

monomials.) Elements written in this fashion are said to be in disiunctive normal form'

2.5 A ilnnp vALIrnD Locrc
The construction carried out in the previous section can be generalized in many

ways.Perhaps the simplest is to let the sst { 0,1} of truth values be larger. Thinking of 0 as

representing false and I as representing true , we add a third truth value I repfesenting

2t
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undecided. It is common to use % inslead ofr , but a truth value shoukl not be conlused u,i/li a

number , so we preler U, Now proceed as before. starting rvith a set of vanables, or primitivc
propositions I/ build up formulas using tl"ris set and some logical connectives. Such logics are

called three-valued, for obvious rcasons, The set F of formulas is the same as in classical lrvo,
valued logic. However, the truth evaluations t will be different, thus leading to a different

equivalence relation = on F . There are a multitude of three-valuecl logics, and their differenccs

arise in the specification of truth tables and implication.

The extending a mapping V ) { 0,u,1} to a mapping F ) { 0,ri,1}, we nee.J ro specify

how the connectives operatc on the truth values. Here is that specification lor a particuiarly

famous tfuee-valued logic.

Again'_we have chosen the basic cotulectives to be v, n, and',. These operations v and a
come simply from viewing { 0,r,1} as the three-element chain with thc implied latticc
operalions. The operation'is the duality of this lattice. The comectivcs :+ and € are defined

as follows.

Fbr this logical system, we still have that a and b are logically equivalcnt, r.har rs -t(3) = - r(b)

ibr ail truth valuations t:V ) { 0,u,1 } if and only ifa 4) b is a tbree-valued tautology.

2.6 FUzzY LOGIC

Fuzzy propositional calculus geneializes classical propositional calculus by using the'
truth set {0,1} . The construction parallel those in the last two sections. The set of building

blocks in both cases is a set V ofsynbols representing atomic or elementary proposilions, Thc

set of formulas F is built up from v using the logical corurectives n, V.' ( and or, and not,
respectively) in lhe usual way. As in the two-valued and three-valued. propositional caliuli, a

truth evaluation is gotten by taking any function t: v ) [0,1] and extending it to a function

lu0
ulu
uul

0

u

I

1tt
ul1
0ul

0

u

I
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t: F ) [0,1] by replacing each elemont a € v which appears in theformula by its value t(a),

which is an element in [ 0,1]. This gives ar expression in element of [ 0,1] and the connectives

V, n, '. This expression is evaluated, by letting

xVy = max {x,y}
xn y = min{x,y}

x' = 1-x

for elements x and y in [ 0,1]. we get an equivalence relation on F by letting two formulas be
equivalent if they have the same truth, evaluation for all -t. A fofmula is a tautology if it
alwals has truth value 2. Two formulas u and v . are logically equivalent when -t(u) : -t(v) for
all truth valuations t. As in three valued logic, the law of the excluded middle fails. For an
elementaeVandatwitht(a):0.3, t(a V a') : 0.3 V 0.7 : 0.7 * l. The set of equivalence
classes of logically equivalent formulas forms a kleene algebra, just as in the previous case.

The association of formulas with fuzzy sets in this. With each formula u, associate the
fuzzy subset [0,1]'+ [0,1]of t0,llgivenbyt) t(u)" Thuswehave amap i]om F to f([0,11")
This induccs a one -to-one mapping {iom F/=into the set of mappings fi'om i0,l]'into [0,1j,
that is into the set of fi.rzzy subsets of[0.i]'. This one{o-one mapping associates fuzzy logical
equivalence with equality of firzzy sets,

2.7 Fuzzy and Lukasiewicz logics
The construction of F/=f<,r t}e three-valued Lukasiewicz propositional calculus and tlie

construction ofthe same except for the lruth values used. Irr the first case the set of truth values
was {0,u,1} with the tables given, and in the second, the set of truth values was the interval
[0,i]wirh

max {x,y}
min(x,y)

1-x

XVY

x^y

we remarked that in each case the resulting equivalence classes ol formulas formed kleene
algebrrs.

Theorem I

The propositional calculus for three-valued lukasiewicz logic and the propositional
calculus for fuzzy logic are the same

proof. r'e outline a proof. truth evaluations are mappings f form ( into the set of truth
values satisS/ing

l(vVw) = f(v)vj(w)
l(vnw) = f(v)nf(w)
f(v') = .f (v)'

23
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For all formulas v and w in F . Two formulas in F are equtvalent if and onit' rf thel'- hate

the same values for all truthlaluations. So we need that two formuias have the same vaiuc ibr

all truth valuations into 10,1] if and only ifthey have the same rialucs tbr ail tnilh l,aiijatrons

into [0,u,1). First, let fl be the Cartesian product I x€(o,r) I 0,u,1] with V. n and't1e1lned

componenfwise. If two truth valuations from F into Jl differ on an element, then these fitnctions

lbllowed by the pro;cction ofll into one of the copies of I 0.u.11 dillet on that elemcl]t. ll two

trulh valuations from F rnto {0,u,1} difler on an element. then these two functions follou'ed b1

is a lattice ernbedding of [0,u,1] into [0,1] diIler on that element. There is a lattice ernbedding

[0,1] ) fl given by y ) {y*}*, where y, is 0,u, or I depending on whcthcr y rs less than x'

equal to x or greater than x. if two truth valuations lrorn F into [0,1] diifer on an element. lhett

these two functions followed by this embedding of [0,1 ] into fJ will differ on that elentcnt. I he

upshot ofall this is that taliing the truth values to be the lattices [0.u,1], [0,1]. and fl all rnduce

the same equivalence relation on F, and hence leld the same propositional calculus.

2.8 INTERVAL VALUED FUZZYLOGI{:

AfuzzysubsetofasetSisamappingA;U)[0,1].Thevaluea(u)foraparticularuis
typically associated with a degree of belief of some expett. An increasingly prevalent vicrv is

that this method of encoding infomration is inadequate. Assigning an exaci llunrber to an

experl's opinion is too restrictive. Assigning an interval ofvalues is more realistic. TIiis tneatts

replacing the interval [0,1] of fuzzy values by the set [ (a,b) ; a,b e [0,1], a<b]. A standard

notatiori for this set is [0,1]l2l . An expertrs degree ofbelief for a particular element u e U r'r'rli

be associated with a pair (a,b) e [0,1] 
Itl No* *e can construct the nropositional calcttlus

rvhose truth values are the elements ol[0,t]l'?]. But first vre need the appropriate algebra c,f

thcse lruth values. it is given by the formulas.

{a.b) V (c,d) = (aVc, bvd)

ia,b) n (c,d) = (a n c, bn d)

(a,b)r : (bi,ar)

Where the operations V,.a , and I on eiements ol[0,1] are the usual oncs, commonly ieferred to

in logic to in logic as the disjunction (V), conjunction (A) , and negation.

2.9 Cnxor,nclr, FoRMs :-
As in classical two-valued propositional calculus, every formula that is, every Boolean

expression such as an(b V c) n dl has a canonical form, the well-klown disjunciive normal

fornr. For example, the disjunctive normal form for (a V b) ,. cr in the logic on the vanables-{

a,b,c) is

(a nb,r c') V ( an b'n c) V (a'n b ,r c')
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and that o{ (anc') V (b n c') is thc sarne form exactly. of course, we coul<l have just uscd the

distributive larv and noted equality, but that is not the point here. In this classical case. t\e.o

Ibnlulas can be checked for logical equivaience by putting them in their canonical fomrs and

noting lvhether or not thc hvo lomrs are identical. Altemately, onc can check iogical equivalencc
by checking equality for all lruth evaluations of the two expressions. Since the set { 0,1 } of tnith
values is finite, this is a finitc proccdure.

Now for Lukasie* icz's three-valued logic, which is equal io fuzzy propositional calculus.

t$'o lbrmulas may be sinrilarly tested for logical equivalence. that is, b., cheoking cqualiry lf ail

truth evaluations. Two formulas in fiizzy propositional calculus are logicall_v.. equivalent il any

onl5'ifthey are logicaily equivalent irr Lukasiervicz's frree-value<l proposirional calcLrlus.

Thc nonnal form lbr De Morgan algebras stems from realizing that all corrjunctions of
litcrals as well as I, are join irrcducible. ]'he normal form ibr Bcolean algebras stcms from
reaiizing that the only join ineducible elenrents in the Boolean oase are the complctc
coniunction of literals in rvhich each varir'hle occum exactiy oucs. For exarnple, if 'Lhe vanahlcs
arc F1,.\2'Xj then xr^xr^x3n and x1 nX'2aX'3 arc complete disjunctior]s ivhileXr ,\x2 xii,.l t:
A x" are not. The empty disjunction is 0 and tlre disjunction of ali the comp'ieie corrjunctions isr.

The join irreducibles in the kleene case are a liltlc more sulrtle. R the variables nr€ xr, X;,
.{r. ....,'.xn, then a conjunction of literals is jcin ineducible ifany only rf it is I . or it conta!11} ar

nlost one of the literais for each variabie. or it contains at least one of the litcrals lor eacir
variable. or it contains at least one of the literals for each variable. Suppose n : .1. Here are some
examples.

I X1 Ax2^ xr is join ineducible. Itcontainsat leastoneofthe literals for each variable. (ltalso
contains at most one of the literals for each -ariable, so qualifies on two counts).

2. \ r A X2 n x'-r is join irreducible tbr the sanle reasons as above.

-1 xi Ax:n -x'-r is join irreducible. hdocs not contain at least one of the literals for cach variable,
and it contains two liiorals for the variablc x2.

{. x1 n X'1 n }i2 n Xrz isjoin ineducible. lt contains at least onc ofthc litcrals for each variable.
5 X1 n X'1 n X2 rr X'2 is notjoin irreducible. It docs not coniain at least one ofthe iiterals for each

variable, and it contains two literals for two variables.

6. X1 AX2 isjoin irreducible. It contains at mostonsofthe literals lbr each variablc.
7. x3 isjoin irreducible. lt contains at most one of the literals for cach variable.

Now the normal form for tlie Boolean algebra case, that is, for Fl,is of course well-
known: every element is uniquely an disjunction of complete conjunctions ofliterals. Instead of
getting into this, we will describe the procedure for putting an arbitrar), fomrula in Kleene
nonnal form. ln the examples illustrating the steps, we assume that arc thrce variables.x 1,x2,xr.

25
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1. Given an formula w, first use De Morgan's laws to move all the negation in, so that the

formula is rewritten as an formula w 1 which is just meets and joints of the lirerzrls, U. and

L For example, xr"(x'2^xl)'would be replaced by xr"(x2vx'r).

2. Next use the distributive law to obtain an new formula w2 from \vr whioh is ln
disjunction of conjunctions involving the literals, 0, and 1. For examplg, replace

x1"(x2vx'3) by (xl\'3). At this point , discard any conjunction in which 0 or a' appears as

one of the conjunction, as well as 1 and 0' from any conjunction in which they do not

appear alone(if an conjunction consists entirely of I's and 0',s, then replace ihc ivholc

thing by 1) This leld an formula w3

3). Now discard all no-maximal conjuctions among the conjuctions that wl is zrn disjunction

of. The type of conjuctions we now are dealing with are either conjuctions of literals or I
by itself. Ofcourse i is above all the others and one conjuction ol literals is belowanoher'

if and only il the former contains all the literals contained in the latter. This process

lelds an formula wa.

4. At this point, replace any conjuction ofliterals, calculate. which contains both iilerals tbr
at least one variable by the disjunction of all the conjuction of hterais lor each vanable

not occurring in c. For example, ifone ofthe conjuctions ids xr^x'r^l^X:, replace it by

the disjunction(X1^x' 1^x2^x3). (x3 is the only variable not occuring in xr^x'l "x2).

5. Finally, again discard all non-maximal conjuctions among the conjuctions that are lctt,
and ifno conjuctions are left, then replace the formula by 0. The formula thus obtained is

now in the normal form described above.

We illustrate the Kleen normal form with the two equivalent expressions.

W = A" (A'AB)v(A'AB')v(A'AC)
W'=AAA'

In the variables, A,B and C

l. There is nothing to do in this step

2. Applications of the distributive law lead to disjuctions of conjuctions involving the

literals.

w2 = (AAA'AB)V(AAAt^Br )V(A^A'nC)
w z = A^Ar

L Neither of the expressions in # 2 contains any non maximal conjunctions, so w1:w; and

wl3=w12.

4. Replace

, A"AI"B by (A"A'br.6; u 14natagn6t1
A^A'^B' by (A^A'^Br^C) v (A^Ar^Br^cr)
A"Ar"C by 1A^Ar^c^B) V (A^Al^C^B')

And

A"Ar by (A^Ar"6r.5;y1aa,at a.g tn6;

V(A^AtB^C')' / (A^Ar^B^^cr)
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To get

W.l = (A^Ar^B"C)V(A;,4Iagag,;
V(A^A'^B'^C) V (A^Ar "Br^Cr)
V(A^Ar^C^B) y (A^A'^C^B')

Wa = (A^Ar^C) V (A^AI^BI"C)
V(A^Ar"B^Cr) V (A^A'^Bi^Cr)

5' Discarding all non-marimal conjunctions amoung the conjunctions that are left means in this
case" simply discarding repetitions, leading to the normal forms.

w5 = (A^-AB^C)V(A"-A"B^Cu;V1a"_a"3r;v(A^Br"Cr)
w5 : (A^-ABC)V (A-AB'C) v (A_ABC!) V (A-AB'C)

EXCERCISES

l. Show that thers are fuzzy quantities A and B, such that
(a) A-A*0
(b) {A+B)-B,1A
(c) NA+l
(d) A/B B*A

2 Show that lor fuzzy quaniities, multiplication does not distribule over addition. I'hat is.
A(B+C)*AB*AC.

3. Let S and T be closed and bounded subsets ofR. Show that
(X ,iX r)(u)=Xs(u x)nX (x) for some x.

4. Compute the a-cuts of the sum oftwo triangular numbers.
5. For f :R-+R and Ae(R), write down the membership function of (A) when

t{x)=-x, f(x):x2
f(x):x1 (*)= l* i5. Define the fuzzy quantities A and B by

A (x'1=1721t ' 
"-v"

B (x)-l
Show that A and B are convex, A +B is convex, but (A + B)i1a*A31a+831a,? wnte dorvn rhe tables for:> and ror classical two-valued propositional rogic.

3 ln iwo-valued propositionar carculates, verify that two propositions a and a and b are
logically equivalent ifand only a => b is a tautology.

9. We write a = b for a <:>. Verify the following for two-valued propositional calculatos.
(a) a" =a
(b) aV3'=l
(c) a^ai=0

(d) a=aVa
(e) aVb=bVa
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(0

(e)

(h)

(D

0)
(k)

0)

a^b=b^a
aV(bVc)-(aVb)Vc
a^(b^c)=(a^b)^c
a^ (b V c) =(a ^ b) V(a" c)

aV(b^c)=nY6)V{a"c)
(aVb;r=a'"6'
(a^ !)r = nr y 6r

10. ln Bochvar'soni three valued logic, <=> is defined by

0

u

1

1

u

0

0

u

I

t3.

veris that a and b being logically equivalent does not imply that a <=> b is a three

valued tautology.

show that u v u = u is changed to uVu=l in the table for V in Lukasiewicz'soni three-

valued logic, then the law ofthe exclued middle holds.

Let a be a formula in fuzzy logic. Show thal if t(avar) =1, therr necessarily

(a) € {0,1}.

Show that {0,u,1} with 0z-u<l is a Kleene algebra. For any set S, Show that {0v,1} S is a

Kiecne algebra.

Show that in the algebra ([0,1], V, n,',0,1) the inequality X^ Xt < y V y' I holds for all x

and y in [0.1]. Show that this inequality does not hold in ([0'l][2].V""0.1)

Show that

A^ (ArnB)v(Ar^Bt;v1A'^c; = 4 n4r

is false for fuzzy sets taking values in [0,1][2]

16. In the tkee variables A,B,C {ind the disjuctive normal firm, the Klccne normal form, and

the De Morgan normal form for

(a) AV (ArA bAB')

(b) A^(B vci

I l.

t2.

14"

15.
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UNIT.III
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3.4 Random Variables

3.5 The probability Density Function

3.6 DistributionFunction

3.7. ProbabilityModels

3.8 MathematicalExpectation

3.9 Some special mathematical Expectation

3.10 Chebyshev'slnequality

EXERCISE

INTRODUCTION:
Many kinds of investigations may be characterised in part by the fact that repeated

experimentation, under essentially the same conditions, is more or less btandard procedure .

Each experiment terminates witb an outcome. But it is characteristic of these experiments that
the outcome cannot be predicted with certainty prior to the performance ofthe experiment.

suppose that we have such an experiment, the outcome of which cannot be predicted
with certainty, but the experiment is of such a nature that the collection of evsry possible
outcome can be described prior to its performance. If this kind of experiment can be repeated
under the same conditions, it iB called a random experiment, and the collection of every
possible outcome is called the experimental space or the sa mple space"
Examplel' In the toss of a coin, let the outcome tails be denoted by T and let the outcome
heads be denoted by H. lf we assume that the coin may be repeatedly tossed under the same
conditions, then the toss of this coin is an example of a random experiment in which the outcome
is one of the two symbols T and H; that is the sample space is the coliection of these two
symbols.

3.1 ALGEBRA oF SETs
Delinition l. If each elemenl of a set { r is also an element of set A2, the set A1 is called a subset
of the set 42. This is indicated by writing A1 c 42. If A1 c 42 and also Az c Ar, the two sets
have the same elements, and this is indicated by writing A1=A2.

D'^rnition 2. If a set A has no elements, A is called the null set. This is indicated by writing
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Delinition 3. The sei ofall elements that belong to at least onc ofthe sets Ar and Az is called the

unionof A1 anti Az. Theunion of Ar ard Az is indicated by writing A1 uA2

Definition 4. The set of all elcments that belong to each of the sets Ar and ,A2 is called the

intersection of A'1 and Az. The intersection of Ar and A2 is indicated by writing Ai n A2.

Definition 5" In certain discussions or considerations lhe totality of all elements that perlairr to

the discussion can be described. This set of all elemenls under consideration is given a special

name. It is called the space. We shall often denote spaces by capital script such as A, B, and C.

Definition QLet A deirote a space and let A be a subset of the set A . The set tLat consists of

all eiements of A that are not elements of A is called the complement of A. The complement of

A is denoted by A* (In particular. A x = @).

I)xanrple. Given A c A . Then AuA* : A AnAr : @, Av.d = A, A n A : A, and (A*)* : A.

3^2 SET FI]NCTI0NS:

hr the calculus, functions such as

(x)=2x,-cc<x<co,

or

g(x,,)) = e 
-x-v' 0 x <o,0<y<-, or possibly

h ( x1,x2,....xn ) =3x 1x2 ....x,,, 0 < xi < 1, i = t,2,......,n

- 0 elsewhere,

were of common occurrence. The value of f(x) at the "Point x =1 " is (1) :2; the value ofg(x,y)

at the "Point (-1,3)" is fG1,3) = 0;

the value of h(x r,x2.......xn) at the "Point (1,1,.'...1)" is 3 Functions such as these are called

funclions ofa point or, more simply- Point functions^

Notations :

ThesymbolsJAf(x)dx

will mean the ordinar,v (Riemann) integral ol (x) oYer a prescribed one-dimensional set A: the

symbol

In J e(x,y) dxdy

wili mearr the Riemann integlal of g(x,y) over a prescntred two-dlmensional set A; and so on.

Example. Let A be a one-dimensional set and let

Q(A):ie''*dx
Thus, ilA = {x;0 < x<o},then

Q(A) = J 'e-' dx =1;

ifA= {x;1 <x52},then

Q (A) = rl'? e-' dx = e 
-r 

-e-2;
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ifAr = {x;0 < x < l} and A2: {x;l <x < 3 }, rhen

Q(Ar uA.r):oJ3"-*dx
: oJIe-*dx+J31e-x6x
= Q(A1) + Q(A);

ilA = Ar u A'2. where A1 = {x; 0<x<2}andA2={x; I <x<3},rhen
Q(A) = Q(Ar,w Aq) = J "-*.tx
= oF e-x dx + rlre-' dx - r J2e-* dx
= e (Ar) | e(A, _ e(Arn A2).

Exampie , Let A be a set in n dimensional space and let
Q(A) = J ....n J axr dxz .......dxn

IfA." { (x1.x2..,,...xn)i 0 < Xr < x: < ....< xn < I }, then

Q(A) =o| #" ... of, dxr dx: .... dxn"l dx,,
: l/n! , where nl = n(n_l) ... 3.2.1.

3.3 THE PRoBABILITY SpT FlIncrrox.
l-et ,-' denote the set of every possible outcome of a rau.iom experirnent; define a set funct:r,,
P((l) such that ilc is a subset ofc, then p(c) is the probabilit3z that the outcome oftrre randcm
experiment is an element of C.
I)cliriirion ; If P(C) is defined for a tloe ofsubsel ofthe space C, and if
{a) PfC) > 0.

(b) P{Cr uc2 uc3 v ...) =P(cr) + p(cr) + p(c3) * .... where the sets ci, i= 1,2,3.... arc such
thatno two have a point in common, (that is, where Ci N C;: @ ,i = J).(c) P(C) : I,

the;i P(c) is called the probability set function ofthe outcome of the randodm expenmenr.
Theorem l
Iior each {} : C, P(C) = I -p(C*).
Proof. 1\/e have C : Cu C * and C n C+ = @ By definition, it follows that
I = P(C) r P(C*), Hence , p(c) = I-p(c*),
'I'heorem 2:

The probability of the null set is zero; that is p(O) =0.
Proof. In Theorem l, take C = e sothatC*:C. Accordingly, we have
P(o):l -P(c): I _l :0,

Theorem 3.

If C1 and C2 are subsets of C such that C1 c Cz , then p(Cr) < p(Cr).
Proof. Now C: : Cr w (C'r n Cz) and Ci n (C'1 n e2).=@. g"n"",
from (b) ofdefinition,
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P(Cz): P(Cr) + P(C'r .\ Ct
However, from (a) of Denifition P(C'1n C2) > 0; accordingly, P(Cz) > P(Cr)

Theorem 4.

ForeachCcC,0!P(C)ll
Proof. Since Z c C c C" we have by Theorem 3 that

P(O) < P(C) < F(C) or 05 P1C) < I the desired result'

fheorem 5"

If C: and C2 are subsets olC then P(Cr v Cz): P(C;) -r F(C) - P(Cr nC:)

Proof . Each of the sets Cr t-] Cz and Cz can be represented' respectively' as a union

nonintersecting sets as follows

Cr uCr: Cr u (C"r n C2) and C2= (CruC, tt (C'r n Cz)

Thus, iiom (b) of Definition

P(CruCz) = P(Cr) + P(C'r ^ C2)

And

P(C2) = P(Cln C2) + P(C'r 
^ 

Ct
Ifthe second of these equations is solved for P(c'r n c2) and this result substituted in the flrst

equation, we obtain.
P(Cr u C) = P(Cr) + P(Cz) - P(Cr n Cz).

Example: Two coins are to be tossed and the outcome is the ordered pair (face on the first coin'

faceonthesecondcoin).Thusthesamplespacemay-berepresentedasC=(c:c=(H'FI).iH'T).
(T,H),(T,T)).LettheprobabilitysetfunctionassignaprobabilityofT'toeachelementofCLet
c, ='{" '"'i,H), 

(FI,T)} urd Cz = tc;c = (H,H), (T,H)' Then P(Cr) = P(Cu) =v2P(Ct'^C2\=1/'

and in accordance with Theorem 5, P(Cr u C2) = %+%-y'=t/a'

3.4 RANDoM VARTABLES (r.v) 
:d withLettherandomexperimentbethetossofacoinandietthesamplespaceassoclat(

the experiment be C: {c; where c is T or c is H} and T and H replesent, respectively, tails and

hearls. kt Xbe a function suchthatX(c)=0 if c isT and tet X(c):1 if c is H' Thus X is a real-

valued function deSned on the sample space c which takes us fiom the sample space c to a

space of real number A = {1;x = 0'l}.
Defini(ion

Given a random experiment with a sample space C ' A function X' which assigns to each

element c € c one and only one real number X (c) = x, is called a random vanable. The space of

X is the ser of real numbers A: {x;x = X(c)'ce C }'
Definition

GivenarandomexperimentwithasampiespaceC'ConsidertworandomvanablesXr

and X: which assigrr to each element c of c one and only one ordered pair of numbers X1(c) :

x1,Xdc) = x2. The space of X1 and X2 is the set of ordered pairs A = { (xr,x2); xr=Xr(c),xz =

XdC),c e c ).
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Definition

Given a random experiment with the sample space c. Let the random variable X; assign

to each element c E C one and only one real number Xi(c) = xi, i - |J,....,n. The space of these

random variables is the set of ordered n{uplets A - {(x1,x2 .....x,); 11= Xr(c) ....., xn = Xn(c),

ce C ]. Further, let A be a subset of A. Then Pr I Xr,.........X") e A] - (C), Where C = { c;c e
C and [Xi(c), Xz(c),..... )<n(c) ] e A]
Example of a sample space C an interval.

Erample.

Let the outcome of a random experiment be a point on thc interval (0,1). Thus,

C : {c;0 < ccl }. Let the probability set function be given by

P(c) = i" dz

For instance, itC = | c;% <c< %), then

P(C) = ,rJ '/' dz = Y,.

Define the random variable X to be X - X(c) :3c +2. Accordingly, the space ofX is A = {x;2 <

x <5), We wish to determine the probability set function of X, namely P(A), A q A. At this time,

let A be rlre set (x;2 <x<b), where 2 <b <5. Now X(c) is between 2 and b when and only when c

e C : { c;0 < c < (b-2)/3}. Hence

P,(A)= P(A) =P(q = {}[o-r/r r1z.

In the integral, make the change of variablex=32 +2 and obtain

P,(A) : P(A) : ,lott3 dx : j^u3 dx.

SinceA:1x;2< x <b ).This kind of argument holds for every set A c A for which the

integral

p(A)=j1tl3dx
exisrs. Thus the probability sct function ofX is this integral.

Eremple

Let the probability set function P(A) ola randon variable X be

P(A)d f(x) dx, where (x) = 3x2l8, x e A ={x;0<x<2}.
Let A1={x;0<x<1/2} and A2={1;1<x<2} be two subsets ofA. Then

P(A1)= p(XeA:):Jer. f (x)ox - { t 31a2 6 dx:l 16a

and

P(A2) : pr(Xenz) = Jxz f(x)dx = tP 3x2," dx=718.

To compute P(AruA2), we note that A1nA2 : O; then we have P(AruA2) = P(Ar)+P(A2)
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Example

Let A ={(x,y);O<x<y<1} be the space of two random variables X and Y. Let the probability set

function be

P(A)=leJzoxoy.
if A is taken to be Aq={(x,y);172<x<}^.1}, then

P(A;) = PI[(X,Y) e Ar] : llwvJ 
,,2 dx dy-174

If A is taken to be A2:{(x,y); Xcy<l,0<x <1/2}, then A2={',, 216

P(A2) = Pr[X,Y] e Arl : P(A'y) :1-P(A') : 3/4

3.5 TrrE PR0BAB|LTTY DENtsry FuNcTtoN

Let X denote a :ardom variable with space A and let A be a subset ofA . If we know how

to compute P(C), C c C, then for each A under consideration we can compute p(A) = pr (X e

A); that is, we know how the probabitity is distributed over the various subsets ofA .

ln this section, we diseuss some random variables whose distributions can be described

very simply by what will be called the probability density function.

(a) THE DrscRET[ TypE oF RANDoM vARtABLE:

Let X denote a random variable with one-dimensional space A . Suppose that the space

A is a set of points such that there is at most a finite number ofpoints ofA in every finite
interval. Such a set A will be called a set ofdiscrete points. Irt a function (x) be such that f(x) >

0,xeA,andthat'
X^ f(x) = 1.

Whenever a probability set function P(A) , A c A , can be expressed in terms of such an

f(x) Ly

P(A): Pr (X e A): E (x),
A

Then X is called a random variable of thc discrete type, and X is said to have a distribution ofthe
discrete type.

Example

Let X tre a random variable ofthe discrete t)'pe with space A : {x;x - 0,1,2,3,4} Let

P(A) = x (x),

Where

A

F(x) =-ll_ ( %)4, x e^
X! (4-x)l
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And asusual, 0! : I ThenifA= { x:x =0, 1 } wehave

Pr(XeA) 4l (%)1+ 4t {y,)' _ s

Xl (4-x)! 1!3! 16

(b} TIIE CONTINUOUS TYPE oF RANDOM VARIABLE:

Let the one dimensional set A be such thal the Riemann integral

I r(x) a" = t,
A

rvhere (1) f(x) > 0, x e A, and (2) (x) has at most a finite number of discontinuities in every

finite interval that is a subset of A . if A is the space of the random variable X and if the

probabilify set function p{A), Ac A, can be expressed in terms of such an (x) by

P(A) : pr(X e e) :l 
o 

(x) dx,

'fhcn X is said to be a random variable ofthe continuous type and :o have a distribution of thal

rlTe.

Example: Let the Space A = { x;0 <x <co}, and let

f(x) - t-,.' * t O'

if X is a random variable of the continuous type so that

Pr(X e A)=J e-dx,

We have, with A = {x;0 < x < 1},

Pr(X e A) =Jr g-*dx = 1 -.-r

l'.lote that pr (X e A ) is the area under lhe graph of (x): e-'which lies above the x-axis and

txitween the vertical lines x :0 and x=l.

If two probability density functions of ;andom variables of the continuous type differ
only on a set having probability zero, the fwo corresponding probabilify. set functions are exactly

the same. Unlike the continuous type, the P.d.f. ofa discrete :ype of random variable may not

be changed at any point since a change in such a p.d.f. alters the distribution of probability. If a

p.d.f in one or more variables is explicitly defined, we can see by inspectign whether the random

variables are of tho continuous or discrete t1pe. For example, it seems obyious that the p.d.f.

F(x,y) = q . x=1,2,3,.....,y=1.2,3,......,

4x+Y
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= 0 elsewhere

is clearly a p.d.f. of two continuous-type random variables X and Y'

Example : Let the random variable X have the p.d.f.

f(x):2x' 0<x<1'

:0 etsewhere.

Find Pr(1/2<X<3 / 4) and Pr(-l /2<X1/2). First,

Pr{l/2<x<3/4)=r,ol% qx)dx = :ta|' " 2*d*:stt6.

Now,

-%I

Pr(-U2<x<tt2): I f(x) dx

(,: I d,+ J 2x d*
)Ao

: wt/4
, t/

Example : Let (x,y):6x2y Ocx<1,0<y<1,

: 0 elsewhere,

be the p.d.f. of two ran{or, variables X and Y. We have, for instance, pt(OcX<3/4,1/3<Y4):

,,rP oP'o f(x,y) dx dy

: J t/3 {3/4 6x2y dx dy + ,f f/a dx dy

:3/8+O-3/8.

Now thal this probability is the volume under the surface (x,y)dx2y and abbve the rectangular

se1{(x,y);0<x<3 /4,113<y<l\ in the xy-plane.

3.6 THE DIsTRIBUTION f'UNTION

Let thc randome iariable X have the probability set firnction P(A), where A is a one-

dimensional set. For all such sets A we have P(AFPr(XeA):P(XSX). This prcbability dopends

on the point x; This point function is denoted by the syrnbol F(x)=p4)i*r. The function F(x) is

called the distribution Ftr' lion (somefimes, cummulative dishibttion fimction) of the random

variable X. Since

F(x) : Pr(Xsx), then, with f(x) the p.d.f., we have
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F(x): I {w),'wsi

For the discrete type of random variable, and

F(x) = 
.- 

J qw; aw,

For the conlinuous type of random variable.

Example 1:

Irt the random variable X of the disciete type have the p.d.f. f(x):x/6,x: l,2,3,zao
elsewhere. The distribution function of X is

F(x) = 6. *. t,
= 116, l<x<2,

= 316. 2sx<3,

= 1, 3<x.

Here, F(x) is a step function that is constant in every interval not cantaining 1,2,, or 3, but has

steps of heights, 116, 2/6 and 3/6 at those respective points. It is also seen that F(x) is everywhere

continuous to the right,

ii,xample ;

Let the random variable X olthe continous type have the p.d.f. f(x):2/x3, i < x<co, zero
elsewhere- The distribution function of X is
Ir(x): J 

x 6 Oru =0, x<1,

=. Jx 2fu3 dw:l-l/x2, 1<x.

The graph of this Cistribution function is depicted in Figure

F(x)

1

0
{)

v
Example : Let (x)=l/1, -1 < x <1, zero elsewhere, be the p.d.f of the random variable X. Define

the random variable Y by Y=X2. We wish to find the p.d.f. of y. Ify>O, thq probabitity pr(y<y)

is equivalent to

Pr(xi s y) - p(- G < X s {-y).

Accordingly, the distribution trnction of Y, G(y)= Pr(Ysy), is given by
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G(y)=0. y<0.

f
= J t,, d, - ..y.0s.,'<1,

-./,

=1 , l<Y.

Since Y is a random variable of the cottinuous qpe, the p.d.f. of Y is g(y):G'(y) at all points of
continuit5' of g(y). Thus u'r ray rvrite

1 Ocy<l,
G(v) =-

2"'T

0 elservhere.

Let the rantiom variables X and Y have the probability set function P(A), where A is a

two -dimensional ser. If A is the unbounded set{(u,v); u<x, v(y}, where x and y are real

numbers, we have

P(A)=P{(X,! e Al: Pr(Xcx,Y<y).

This fanction of the point.(x, y) is called the distribution function ofX and Y and is denoted by

F(x"y):Pr(XSx,Y<y).

IfX and Y are random variables of the continuous type that have p.d.f. (x,y), then
Yx

.*l _l f(u,v tdu dv.

3.? PR0BABII,I.iT M;L"I!p!9

The probability model described in the followirg:

Example

Let a card be drrwn at random from a ordinary deck of52 playing cards- The sample

space is thc union of k=5^ )utcomes, and it is reasonable to assume that cach of these oulcotnes

has the seme probability l/52 . Accordingly, if 81, is the set of outcomes that are spades,

PF,\=13152=l/4 because there are r,:l3spades in the deck; that is , 7+ is the probability of

drawing card that is a spade- If Ez is the set of outcomes that are kings, P{E)4/52: l/3 because

there are r2=4 kings in the deck; that is , 1/13 is the probability of drawing a card that is king.
'Ihese computalions :rre very easy because there are no difficulty in the determination of the
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appropriate values of r and k. However, instead of drawing o lV.;,ip ,i:,:i ..r: rard

are taken, at random and without replacement, from this deck. !.,j ,- : . : r : .,;!iri iiitnd

as being outcome in a sample space. It is responsible to assurrr,-. ,,.. . .r-;:: i,:q as

the same probability. Now if E1 is the set of outcomes in eaeh ,,:,:i,. . . ,:;:i.. lriEr)
is equal to the number rl of ail spade hands divided by the tctal r,: . .:rlj i::,nds.

It is shown in many books on algebra that

11 : lscr= 13 | and k="C, = 52,.

5 !81 5t 47t

Ingenera1,ifnisapositiveint€gerandifxisat;a:-'
thon the binomial coefficient

ncx: n!/x!(n-x)!

is equat to the number of combinations of n things taken x at tini:^ 'i i,.

P(Er) r3Cs 13.12.11.10.9

52C5 52.51.50.49.48

= 0.0005

approximately. Ncw, let E2 be the set of outcomes in which aii:::;:: . ; :, ,. 3;;r.{g. l}.en
E2* is the set of outcomes in urhich no card is a spade.

There are 12* : 39Cs such out comes Hence

P(E2r') = 3eC. and P(8, =l-P(Err,).
( -<

Now suppose that E3 is the set of outcomes lrt which €xacti.5, 1;1',..1. ,,::.: : ..r'' ...,,, ,,1.,1 i,i;..tly
two card are queens.

We can set the three kings in any one of the 4C3 ways a1r{l i!:- , , : :. . ,1, .:nr: if '"C2

ways by a well-known counting principle, the number of outcor-;:ri: i,, '. ,., - --' 'il2 lhus

PGr) =4Ca 
ocrf'Cr. Finally, let Ea be the set of oulcomes in r"..hicir rli, . :.,, .;iy rwo liings,

two queens, and onejack. Then

P(Ea) - aC2 ocroc,/s'c,

because the numerator of this fraction is the number of outcornr.. ",, .
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3.8 MATHAn{, ITICA I, EXPECTATI0N

Let X be a tandom variable having a p.d.f. (x) and let u(X) be a fimction ofX such that

I
E [u (x)]- J u (>J f(x)dx, exist is

itX is a clntinuous tyl)e ofrandom variable,

And, E [u (x)]=L u (x) flr)
exists, if X is a discrete tlpe of random variable. The integral, or the sum, as case may be, is
cal1ed the mathematical expectation.

Remarks.

The usual definition of E[u(X]] requires that the integral(or sum) converge absolutely.

We may observe lhat u(X) is a random variable Y with its own distribution of probability.

Suppose the p.d"f. ofY ls g (y), Then E (Y) is given by

-*l' yg(y) dy or Iy yg(y), according as Y is of the continuous tlpe or ofthe discrete t1pe.,'
Results:

(a) Ifk is a constant, then E (k) = k.

(b) Ifk is a constant and v is a function, then E(kV): kE(v).

(c) lt kr and k.i. are constants ard vl and v2 are functions, then

E (k1 v;+k2v2)= k1E{v1)+k2E(v2).

Extmalel:

Let X have the p.d.f.

F (x) = 2i1-*r,0.,,.t,

= 0 elsewllero.

Then
I

E (X)-J- x(x) dx= j (x)z(t-x) ax = ti:,
0

E(x2)=J- 
^2 

q*; dx = sJ' 1*)z1t-x; dx: t/6,

And, of course,

E (6x+3x1d( 1/ 3)+3 (t / 6\ =5 /2.

Example 2:

Let X have the p.d^f.

f(xFv6, x=1,2,3,

=0 elsewhere.
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Then

E(X') : I* x3qx; :2r ri O

x"t 6

: l/6+16/6+81/648/6.

Example 3:

LetXandYhaveap.d.f,

F(x,y) = x+y, Ocx<l,Ocycl,

= 0 elsewhere.

Then,

E (xY1=J- J- "lq x,y) dx dy

=Jt o j' *l(x+y) ax ay

:17/72.

Example 4:

Lal us divide, at random, a horizandal line segment of length 5 iqto two parts. If X is the
length of the left-hand part, it is reasonable to assume tlrat X has the p.d.f.

F(x) =1/5, O<x<5,

= 0 elsewhere.

The expected value ofthe length X is E(X)= 5/Z and the expected value of the length 5_X is
E(5-X):5/2. But the expected value of the product ofthe two length is equal to

5

Elx(5-X)l : ol x(5-x)(1/5) dx=2s/6 4s/42.

That is, in general, the expected value of the product is not equal to the product of the expected
values-

4l
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3.9 Sour Srucrll MarmMATrcAL E)trEcrATroNs:

Let u(X)=X, where X is a random variable of the discrete type having a p.d.f. f(x). Then

E(x)=tx(x).

Ifthe disorete points of the space ofpositive probability density are ar,a2,al,.....,then

E(X) = a1f(a1)+a2(a2)+a3(a3)+......

This sum of products is seen to be a "weighted average" of the values 4,a,2,a6u..., ihe "weight"

associated with each ai being (ai). This suggest that we call E(X) the arithmetio mean of the

values of X, cr, more simply the mean value of X(or the mean value of the distribution).

The mean value trr of a random variable X is defined, when it oxists, to be

p = E(X), where X is a random variable cf the discrete or of the continuous type .

The variance of X will be denoted by d, and we deline

o2 = E[(X-p)2],whether X is a discretc or a continuous type ofrandom variable.

It is worthwhile to obsen'e that

o2 = r 1 1x-p;2 i --e (xz -Zstx+ 1t21;

and since E is a linear operalor,

o' = E(xt)-zpr(x)+p2

= E(x2)-2p2+ir2

Result : o2 :E(X1-pt.

Example 1. Irt X have the p.d-f

F(x): I

z[-+r1, -l<x<l'

= 0 elsewhere

Then the mean value of X is
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.,
P =J-x(x) dx --rJr x x+ldx = l/3

while the variance ofX is

ot = J' x2qx;dx-pz = -,1 ' x2Jt! d x-(t/3)2 = 219.

2

Example 2. If X has the p.d.f

F(x) : 11x2, I <x,oo,

= 0 elsewhere.

Then the mean value ofX does not exists" since

,1"'x I dx= lim I

x2 b_;o ,1.***
=lim Ilogxl ,b

I ,-^

= lim {log b - log i} does not exist.
b+ro

Example3. Given that the series

I/l2+1/22+12+,...-..

converges to n216. Thei

= O elsewhere,

is the p.d.f" of a discrete type of random variabre X. The moment-generating function of this
distribution, ifit exists, is given by

M(t;=E1g8;=;x .1* qx,

= >, 6eu/n2x2.

X=l

Kx)-5/n2r2, x=1,2,3,.....,
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3.10 CHEBYSIIEV'S INEQUALITY:

Theorem r

Let u(X) be a nonnegative function of the random variable x. If E[u(>o] exists, then' for

every positive constant c.

Pr[u(x)>c]<E[u(x)]

Proof :

The proof is given when the random variable X js of the continuous type; but tlre proof

can be adapted to the discrete case if we replace integrals by sums. Let A={x;u(x) >c} and let

(x) denote the p.d.L of X. Then

Etu(x)l : -l-' u(x) f(x) dx: ir u(x) f(x) dx + Jo* u(x) f(x) dx.

Since each ol the integrals in the extreme rii;ht-hand member of the preceding equation is

nonnegative, the left-hand member is grealer than or equai to either of thern. In particular,

E[u(x)]> Ja u(x) f(x) dx.

However, if xeA, then u(x) > c; accofdingly, the right-hand member of the preceding inequality

is not increased if we replace u(x) by c.

Thus

Elu(X)l > 
"fo 

f(x) dx.

Sirrce

Jo r(*) a^: Pr(xeA) : Pr[u(X) > c1'

it follows that

E[u(X)] >cPrlu(X)>cl,
Which is the desired result-

T'lr eorem : CnBsvsHrv's fnngu.lllrY'

Lfl rhe random vanable X have a distribution of probability about which we assume tl]at

there is a finite variance 02. fni", of oourse, implies that thero is a mean p. Then for every k>0,

Pdlx - pl> kc) < l/F,
Or equivalently,

Pr(lx-pl <ko) >1-1N.
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Proof. In the above Theorem take u(X) = (X-p)' and c=k2d. Then we have

Pr[(X-p)2 > k2o21 < E1x-p)tJNo,.

Since the numerator of the right-hand member of the preceding inequality is d, ure inequality

may be written

Pr(lX-pl >k)<1/k2,

which is the desired result. Nalurally, we would take the positive number k to be greater than I

to have an inequality of interest,

It is seen that the number 1lk2 is an upper bound for the probabilify P(lX+l ) ko). In the

following examplo this upper bound and the exact value of the pmbability are compared in

special instarrces.

f,xample 1:

Let X have the p.d.i

F(x)=l/2i3"{3<x<{3,

= 0 elsewhere-

Here p-0 and s2 = 1. If k=3i2, we heve the exact ppbability

Prilx-pl >ko) : Pr(lxl > 3/2) = 1-.tSttz U.h ax : r$tZ.

By chebyshev's inequality, the preceding probabitity has the upper bound

l1x: = 4lg. Since 1-312--{.134, approximately, the exact probability in this case is considerably

iess than upper bound 4i9. If we take k=2, we have the exact probability P{lx-pl > 2o) :
P(lXl>2)=O. This again is considerably less than the upper bound IIC=1/4 orovided by

Chebyshev's inequality.

1n each instance in the preceding example, the probability Pdlxf.rl > ko) and its upper bound

lik2 differ considerably. This suggests that this inequality might be made sharper, However, if
we want an inequality that bolds for every k>0 and holds for all random variables having finite

variance, such an improvement is impossible as is shown by the following example.
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Example 2.

Let the random variable X ofthe discrete tlpe have probabilities 1/8,6/8,1/8 at the points

x : -1, 0, l, respectively. Here p=0 and c2:l/4. If k:2. then lik?:l/4 and Pr(ix-pl > ko)= P(lXi
> 1) :l/4. That is, the probabilify Pr(lx-pl Z ko) here attains the upper bound l/P=t/4. Hence

the inequality cannot be irnproved without further assumptions about the disbibution ofx3

Let X be a random variable with mean p and let e[fi-p)2k] exist. Show, with d>0, that

Pr(lx-pl > d) s E[(X-].r)2klld2k.

Let X be a random variable such that Pr(X<0):0 and let p:E(X) exist. Show that

P(X>2p) <1i2.

EXERCISE

1. A point is to bc chosen in a haphazard fashion from the interior ofa fixed circie. Assign a

probability p that the point will be iruide another circle, which has a radius ofone-half the

first circle and which lies entirely within the first circle.

An unbiased coin is to be tossed twice. Assign a probability Pl to the event that the first
toss will be held and that the second toss will be a tail. Assign a probability p2 to the

event lhat there will be one head and one tail in the fwo tosses.

Find the union Ar w ,A,2 and the intersection A1n A2 of the two sets A1 and Az, where:

.A1 = {x;x -.0,1,2}, A, = {x;x :2,3,4}

A1 = {x,o < x4l, A2: {x;1 < x<3}
A1 = {(x,y);O < x <2,0 <y<2}, Az : {(X,Y); I <X<, 1 <Y<3}.

D.D.C.E.

Find the oomplement A* of the set A with respect of the space A if:

A - 0 ,ix;O.- x< 1), A: {x;5/8 <x< 1}.

A = {(x,y,z) 1y2+y2+22 < 1} ,a= {$,y,2\;x2+f+} = ty

A= { (x,y)' l* | + lvl :z },A= {(x,y); xz+f<}.

If the sample space is C = Cr v Cz and if P(C1):0.8 and P{Cr):0.5, find p(C1n Cz)

I-et the sample space be C={ c:0<c<oo }; Let C c C be defined by
C = {c;4 <c < oo } and take P(C) - Jc "-' dx. Evaluate P(C) . P(C*), and p(C u C*).

3.

(a)

(b)

(c)

4

(b)

(")

5.

6.
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7. lrt acardbe selected from an ordinary deck ofplaying cards. The outcome c is one of
these 52 cards. l-et X(c)= 4 if c is an ace, let X(c!3 if c is a king, let X(c)=2 if c is a
queen, let X(c):1 ifc is a jack, and let X(c) = 0 otherwise. Suppose that P(C) assigns

a probability of 1152 to each outcome c Describe the induced probability Px(A)

on the space A : {x;x = 0,1,2,3,4} ofthe random variable X.

(8) L,et the Space ofthe random variable X be A : {x;0<x<l } IfAr = {x;0 <x <%)nd
Az = { x; % lx < ll, find P(Az) if P(Ar) = % .

(9). Let the space ofthe random variable X be A = {x;0 < x <10} and let P(Ar) = 3/8

where Ar = { x;l < x < 5}.Show that P(Ar) < 5i8, where Ar = { x;5 < x < 10 } .

(10). L€t thc subsets Ar ={x;Ya<x<Vz}andAt={x;%<x<I } of the spacc A = {x;0 < x , 1} of
the random variable X be such that P(Ar) = lre and P(Ar) = %. Find P(Ar u Ar), P(A'r),

and P(A-r n A*r)

(ll) LetA': {(x,y);xS2,y=a,Aq= {(x,y); ),.=2,y11} A3= {(x,y);x<0, y s 4}, and

Aq- {(x,y}; x 50,y< li be subsets of the space A of two randorn variables Xand Y,

which is the entirc trvo-dimensional plane. If P(Ar) = 7/8, P(Ar) : 4,/8 P(At : 3/8 and

P(A"{) = 2/8, find P(A5), wherc A5 = {(x,y); 0 <x<2,1 < y54}.

(12) C;vel I llrE (1+x2]l dx,whereAcA : {x;-*<xcoo} show that the integral could

serve as a probability set function ofa random vadable X whose space is A

(13). For each ofthe foilowing, find the constant c so that f(x) satisfies the conditions ofbeing

a p.d.f. of one rardom variable X.

(a) {x)=(2/3)x,x=1 ,2,3,.... , zera elsewhere.

(b) (x):cxe-*,0<x<-,zeroelsewhere.

(14) lrt (x):x/15, x=12,3,4,5, zero elsewhere, be the p.d.f. of X. Find pr (X= | or 2),

Pr(ll2<X<512), and Pr(l< X s2).

(15). Showthat fxe-*dx= # e-*dx=l,

and, for k) I , that @y integrating by parts)

6f' xka* dx : k J- " 
kie-* dx.

(a) What is the value of # xne-'dx, where n is a nonnegative integer?
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(16) Given the distribution function

F(x) 

, ;:1:;'= 
-'

SketchthegraphofF(x)andthencompute:(a)Pr(-ll2<X(r1'I:(b)Prfi=0);(c)t"'
Pr(X=1);

(d) PI(Z<X < 3)'

( l7) Let f(x)- (4-xyt 6, -2 < x < 2, zero elsewhere, be the p'd'f' of X'

(a) sketch ttre distribution function and the p.d.f. of X on the same set of axes.

(b) If Y : ixl, comPute Pr(Y31)'

(cr) If Z : X2, compute Pr(Z<1/4).

i-et F(x) be the distribution function of the random vafiable X. If m is a number such that

F(m) = %, show that m is a median of the disaibution'

(lS) Compute the probability of being dealt at random and without replacement a l3-card

britlge hand consisting of: {a) 6 spades,4 hearts, 2 diamonds, and 1 club ; (b) 13 cards

of the same suit.

( t g) Tbree distinct integers are chosen at random from the first 20 positive integers.

Compute the probability that; (a) thcir sum is even; (b) the product is even'

(?0)LetXhavetheuniformdistributiongivenbythep'd'f'f(x):115'
x = -2,-1,0,1,2, zcro elsewhere. (a) Find the p tl'f' of Y=X2'

(2 I ) Let X have the p.d.f. f(x):(x+2)/18, -?-<x<4, zero elsewhere Find E(X)'

Et(X+2)31, and E(6X-2(X+2)31.

{22) Let the p.d.f. of X and Y be (x,y) = e-*-Y' O<x<"o, o<y<.o, zero elservheJe. Let

u(X,Y) =X,v(X,Y) =Y and w{X,Y)=XY. Show that Elu(X'91' E[v(X'Y)]: Elw{X'Y)l'

{23). l,ct X have ap.d.f. (x) that is positive at x: -1,0,1 and is zero elsewhere'
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(a) Ii t{0):l/2, find E(X2),

(b) If f{O)=tlZ and if E(XF1/6, determine f(-l) and (t).

(24) Find the mean and variencq ifthey exist, of each ofthe following diskibutions.

(a) &x)=31/x!(3-x)l (1/2)3, x:0.1,2,3, zero elsewhere.

(b) fix)dx(l-x), Ocx<l, zero elsewhere.

(c) {x)* 2/xr, 1<x <co, zem elsewhere.

(25) kt (x!-(l/2)3, x- 1,2,3,..., zero elsewherc, be the p.d.f. ofthe random variable X.
Find the moment-generating f.rnctioq the mean, and the variance of X.

Q6) For each of rhe following probability density firnctiors, compute
P{p-2ccX<p+2o).

(a) Iix)= 6x(l-x), 0 < x < l, zero elsewhere.

(b) (x)= (I/2)x, x:1,2,3,..., zero etsEwhere.

(27J Let the random variable X have the p.d.f.

F(x) =p, x = -1,1,

:I-2p,x={,

= 0 elsewhere,

where 0 < p< %. Find the measure of kurtosis as a function of p" Determine its value when p:l/3,
p:115, p=l/10, and p:17166. Note that the kurtosis increases as p decreases.
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EX.ERCISE

4.1 CoNDtrroNAL PRoBAsrLrw
Let the orobntrility set function P(C) be deiined on the sample space and lei Ci tre a

suhset ol'such that P(Cr)>0.The conditi"onal probabilitv of the evcnt C2, relative to the eveni ('i:
or, mor€ briefly, the conditional probability of C:, given C1 is denoted hj p(c:/cr ) and is definud

hj

P(CrlC'F1 and P(CzlCrI P(C;nC2lCr)"

Hence

P(CzlCrF P(CrnC2/P(Cr )
Is a suitable definition of the conditional probability ofthe event C2, given the event C1, provided

P(Cr) > 0.

Let P denote the probability set function of the induced probability on A. If A1 iurd A2 zrro

subsets ofA, the conditional probability ofthe event A2, given the event Ai, is

P(AelAr) - 8(&-O_4_')
P(Ar)

Provided P(A1p0.

Erample, A hand of5 cards is to b€ dealt at random and without replacement ftom an ordtnary

deck of52 plalng cards. The conditional probability of an all-spade hand (Ct, relative to the

hlpothesis that lhere are at least 4 spades in the hand (Cr), is, sinca Cr n Cz:Cz,

P(Cy'Cr)=P(cl:).e(Cr) = t3c, / 5tcs

It3co x ]nc1+ llc5 / Jtcrl

50



M.S.University D.D.C.E. I M,Sc., Maths

&xsrnnle

A bowl contains eight chips. Three of the chips are red and the remaining five are blue.
T*'o chips are to be drawn successively, at random and without replac€ment. we want to
comput€ the probability that the first draw results in a red chip (cr) and that the second draw
results in a blue chip(cz). It is reasonable to assign the following probabilities:

P(C:) = 3/8 and P(C2lCr) =5/7.

Thus, under these assignments, we have P(C1nC2) = 3Cs x 5Cr= 15

56
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From an ordinary deck of praying cards, cards to be dawn successivery, at random and
rvilhd}ut replacement. The probability that the third spade appears on the sixth draw is computetl
as follows. Let Cl be the event of two spades in the first five draws and let Cz be the errent of a
spatle on the sixth draw. Thus the probability thai we lvish to compute is p{c I n c2) It i::
reasonable to take

P{Crj= }3Czx30Cr

-12Cs and P(CzlCr) =l lr'47.

'f he desired probability P(c1ncz) is then the produet of these two. numbers. More generally, if
-*' i-3 it ,1t" number of draws necessary to produce exactly three spades, a reasonabte probability
inotiel for thc random variable X is given by the p.d.f.

F{x) = l3C2 v 39C* 11, x - 0, 1.2,...... 39

JaL 2+x) 50-x

= C elsevrhere,

Then the parricular protrability which we computed is

P(Cr^c2) = Pr(X=3) = (3).

,t.2 ir{ARGtNAL AND CoNDrrloNAL DrsrRrBUTroNs:

I"et /(x1'x2) be the p.d.f. of two random variables X1 and X2. F(xr,x2) is the joint p.d.f. olthe
iandom variables X1 and Xr. Consider the event a<X1<b, acb. This event can occur when and
only rvhen the event a<X1<b, -co<X2<co 6scurs; that is, the two events are equivalent, so that they
have the same probability. But the probability of the latter event has been defined and is given
li.i
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Pr(acX1<b,-co<X2<.o) = J 
b 

-- J' (xr,x:)dx: dxr

for the continuous case, arld by

Pr(a<X1<b,-co<X2<6){a<x I <bx2f, (x r,xz)

for the discrete case.

Aeain, /u(xz): .J 
:ff:::Tuous 

case),

is oalled the marginal p.d.f. of X2 Where /2(x2) is the p.d.f of x2 alone

Example I-et the joint p.d.f. of Xr and Xz be

.f(x,,xz) = xr+xz, xf1,2,3, xz: 72

2l

= 0 elsewhere

Then

Pr (x r =3)j(3, 1 )+ f (3,2Y3 t 7

and P(x2=2pl( t,2)+ f Q,2)+ f (3,\= a/ 7.

On the other hand the mar$nal p.d.f of Xr is
')

/rfir)= I Xr*xz= 24+3 ,a:1,2,3
xz=l 21 2l

zero elsewhere, and the marginal p.d.fofx2 is

/2(x2) = ! xr+xr = 6+3x2, xt=1,2

2t 2l

zero elsewhere. Thus tbe preceding probabilities may be computed as Pr(X1:3) = J {3):3/7 ana

Pr(xz:2):lzQ)4t7

Example Let Xr and Xz have the joint p.d.f

f(x;) = 2,0<xr<xz<1

: 0 elsewhere

Then the marginal probability density functions are respectively,
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,fr(xr) = ,,-,1 zdxz: 2(1=1), ocx1<l

= 0 elsewhere

and /z(xz)01"2 2dx1 = 2x2,0<x2<l

= 0 elsewhere

The conditional p.d.f of Xr given X2: x2, is

f(ilx) = 2/2X2 = 1/x2, 0<x1<x2,Ocx2<1

: 0 elsewhere

Here the condilional mean and conditional variance ofXr, given X2 = x2 are, respectively,

E(x1lx) = -J* xrf(x1lx2)dxr
Xt

= oJ 
'xr . 1/x2 dx2

= x', 0<*z<1,

2
2

and Er(x1E(Xrlxz)l /xz) 

= 
jt,l,o.;].il"tt.

Finally, we shall compare the values of Pr (0<X1<1l2Vz: 3/4) and Pd0<Xr<l/2). We have
lt2 v2.

P(O<xr<l/21X2 = it4) : io f(x,13/4)dxr : Io{+t3ita*, :2ll
but

t/2 lt2
Pr (0<Xi<1/2 : Io fit*') a*' : J 2(l-xr)dxr = 3/4)

Let the random variables, Xr,&,X1........Xn have the joint p.d.f t(x1,x2,x3.....x1). If the
random variable are of the continuous t1pe, then by an argument similar to the two - variable
case, we have for every a<b, Pr(acXl<b): 

"f /r(xr)dx,

Where /1(x1) is defined by the (n-1) fold integral

./,(*') :'k... -J 
- flx',"r,............xn) dx2......dxn

Accordingly f;(x1) is the p.d.f of the one random vaiable Xr and fr(xr) is called the marginal p.d.f
of X1. The marginal probability density functions, f2(x2), .... fi(xr) of x2,...,.xn respectively are

sinrilar (n-l) fold integrals. Each marginal p.d.f has been a p.d.f of tine random variable. It is
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convenient to extend this terminology to joint probability density fimctions. I-et (x1,x2,.....xn)

be the join p.d.f of the n random variables Xr,Xz, ..... X" ) Take any group af k <n of these

random variables and let us find the join p.d.f of them. This joint p.d.f. is called the marginai

p^d.f. of this particular group of k variables. The marginal p.d.f. of X2, &, Xs is the joint p.d.L of

this particular group of three variables, namely,

-"f .^f --f f txl,x2,xr,x4,xr,x6) dx1 dx3 dx6

if the random variables are of tho continuous type.

If /r(xr) > 0 . the symbol / (x2......,xn I xn ) : /(xr"xz .......xn)

.fr(xr)

and / (x2.......xn lxr) is calied the joint conditional p.d.f' of Xz'.....)L given X1 : x1. The joint

conditional p.d.f. of any.n-t random variables, say X1,........Xir , Xinr , ................. Xn' given X;

: xi is dehned as the joint p.d.f. of XrXr, ............. Xn divide.d by marginal p.d.f. f (x;), provided

-f;{x;) ;' 0 lvlore generally, the joint conditional p.d.f. of n-k of the random variables, for given

values of the remaining k variables, is defined as the joint p.d.f. of the n variables divided by the

mariginal p.d.f. of the particular group ofk variables, provided the latter p.d.f is positive.

The conditional expectations of u(X2,......,X") given X1=x1,is, for random variables of the

conlinuous tlpe , given by E[u(X2,...,X')lxi ]

= J ... -- i 
- 

u(x2,....x.)f(xz,...xnlx1 ) dx2....dxn

provided fi (x1)>0 and the integeral converges(absolutely).

,1,3 THE coRRELATToN CoEFFTcTENT

l,et X,Y ,and Z denote random variables that have joint p.d.f. f(x,y,z). The means of X ,Y , and Z ,

say pr ,lr2 and !rj, are oblained by taking u(x,y,z) to be x,y, and z, respectively; and the varianoes

ol X,Y and Z, say sr2 ,oz2 and o32, are obtained by setting the function u(xy,z)equal to (x-

l;: )2,(y-,u:)2, and (z-p3):, respectively.

E[(X-p1)ff -prr) : E(XY-p2X-p; Y+p1 p.2)

= E(XY)-UzE(X)-pLE(L)+Fr tr2

: EGfO-P'1"'

This number is called the co'.'ariance of X and Y. The covariance of X an Z is giveh by E[(X-

prXZ-pr)], an the covariance of Y anZ is E[(Y-p2)(Z-p3)].

Il each of o'r and o2 is positive , the number

p12= E[(X-F')ff-p2)]

ol02
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Example I,et the random variable X and y have the joint p.d.f.
F(x,y):x+y, 0<x<1,t)<ycl,

:0 elsewhere,

compute the conelation coeflicient of X and y. when only two variables are under
consideration , we shall denote the correlation coefficient by p. Now

Fr=E(x) +'J I xg+y)dxdy--7/12
and

o r 

2=E(x2)-p, 2:ol' 
oll xrqx+y;oxo y-(7 / lzS2 =1 1 1 1 44

Similarly, pz:E(y)=1 i 12 and o2=E(yz)-pz 2-t l/44
The covarience ofX and y is

e(XY)-p1p2 = J tJ' xy(x+y;ax dy17 I tz)2:-U144.
Accordingly, the correlation coeflicient ofX and y is

p = -l/144
(l l/144) (11/144) : _1/1 1.

Example

Let the continuous t5pe random variables X and y have the joint p.d.f
F(x,y)=sr, 0<x<ycoo

=0 elsewhere

The moment generating function of this joint distribution is
M(tl,t2 = df *l 

* 
exp(t;x+r2y-y)dydx

=l
(1_tr_trxl_h)

provided tr+tz<l and t2<1. For this distribution, Equations

or?=E(x2)-p,2:dM(o,o) - pl

becomes

Further more,

respectively.

' Q1-

ltr=l, pr=2

o12=l 612*2

E(X-trrXY-pr)l:l

the moment-generating firnctions of the marginal distributions of X and y are,
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M(tr,0): I , tr<l

i -tr

M(0,12) : L ,tz<l

(l-t )2

Thesemoment-generatingfunctionsare,ofcor[sgrespectively'thoseofthemarginal
probability densitY functions'

fr(x) = fe 
Y: e-*, 0<x<"o

zero elsewhere, and

fr(y)=e-Y yi 
- d*:y"', O.y"<*

Zrro elsewhere.

4,4 STOEHASTICIXTEIW
LetXrandXzdenoterandomvariablesofeitherthecontinuousorthediscreteRDe

which have the joint p'd,f. /(xr,xz) and marginal probability density functions /t(xr) and /z (xz),

respectively.

The joint p.d.f. /(xr,xz) as

.f(xr,xr) :.f(xz I *,) ,ft(*')-
Definition

kt the random variables Xr and Xz bave the joint p'd'f' 'f(xr*z) and th€ marginal

probability density functions/1(x 1) and /2(x2) respectively. The random variables Xr and x2 are

said to be stochastically independent if' and only if' !(x1'vJ) - 'fr(xr) /r(xz)' Random variables

that are not stochastically independent are said to be stochastically dependent'

Example : I-et the joint p'd.f. of X and X2 be

/(x1,x2) - xr * xz ' 0<xl < 1' 0 <xz< l'
: 0 elsewhere.

It will be shown that Xr and xz are stochastically dependent. Here the marginal plobability

density functions are

.f,(xr): -J'.f 
(*,,*r) er:l (x1+x2) dx2=x t+/' ,0<x1 < l,

: 0 elsewhere

f z$z) =-".1 
- 
; 1x1,x21 a*, = J 

t 
(x1+x2) dx1: t/z+ x2, 0 < xz < l,

: 0 elsewhere

Since /(Xr,Xz) =l= f {x)f2(xz), the random variable Xr and x2 are stochastically dependent'
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Thc ibllowing theorem

probability densiry funcrions,

stochastical ly dependent.

Theoren {t )

it possible to asser! without computing the marginal
random variables X: and X2 of Example above are

(x1,x2lf1(x1)f2(x2), where lr(x r) :rnd

X; and X2, respectively. Thus, the

makes

that the

Let the random variablcs Xr and Xr have the joint p.d.f (xr,xz). Then X1 and X2 are
slochastically independent if and onry if (x1,x2) can be written as a product of a non negalive
function of x1, alone and a non negative function olx2 alone. Thar is,

F(x r,xz) = g(xr)h{xz),

where g(xs)>0. x1€A1, zero ersewhere, and h(x2p0, X2 €A2, zero ersewhere.
Proof.

lf Xi and X2 are gtochilstically independent, rhen
f2(x2) are rhe marginal probability density functions of
condition (x 1,x2)=g(x 1)h(x2) is fulfiiled.

conversely, if (x 1,x2)=g(x; )h(xr), then, for random variables of the conrinuous rlpe, we
havc

f,(xr) = J- g(xr)h(x2)dxr = g(xr) J- h(x2)dx2 = crg(xr)
and

fdxz) = J' g(x1)h(x2)dx! = h(x:)._l-g(xr)dxr - c:h(xr),

where c1 and c2 are constants, not functions of xt or xz, Mor@ver c1c, =l because
t - J'J. g(x1)h(x)dx1dx2 = [l-.-g(xr)dxr] [J-h(xz)dx:] = c:cr.
These results imply that

(xr,xzFg(x 
r )h(x2)rc1 g(x 

1 )c2h(x2):fr (x r )fi(xz).
Accordingly, xl and x2 art: sto€hastically indcpcndenf.

From the above example we see lhat the joint p.d.f.
(xr,x:) = x r +x2, kxr< I ,o<x2< l,={ elsewherc,

cannol be written as the product ofa nonnegative function ofxl arone and a nonnegative function
ofx2 alone. Accordingly, X; and X2 are stochastically dependent.

Theorem 2r If Xr and X: are stochasticarty independent random variabres with marginal
probability dcnsiry'functions fi(xr) and Q(x2), respectively, then

P(acX1<b'c<X2<d)=pr(a<Xr<b) p(c<Xz<d) for every acb and ccd, where a,b,c, and d arc
constants.
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Proof. From the stochastic independence of Xr and Xz' the joint

fi(x1)fdxr). Accordingly, in the continuous case'

Pr(a<Xrcb,c<Xz<d) = f J fr(xr)fz(xz)dxz dxr

=1f r,1x1)dxr l[Jd fz(xz)dxz]

=Pda<Xr<b)P(ccXz<d);

or, in the discrete case'

Pr(a<Xs<b,ccXr<d) = I I' fr(xr)fz(xz)

a<xt<b c<xz<d

= tt fier)l It fi(xz)]

a<xl<b c<x:<d

= PdacXr <b)Pr(ccXz<d)'

Example

In first Example Xr and X: were found to be stochastically dependent' There' in general'

Pr(a<Xr<b,c<Xzd) * Pr(a<Xr<b)P(c<X'?<d)'

For instance,

P{0<XI<I72,0<X rtlo): oltn J1i2 (xr+xz)dxrdxz- 1/8'

whereas

P(O<Xr<liz) : Jrn (x1+12)dx1=318

and P(0<X:<1 n): oltt2 (7p+x)dx2:3/8

Theorem3.LetXrandX2denoterandomvariablesthathavethejointp.d.f.f(x1,x2)arrdthe
marginal probability density functions fi (xr)antl fz(xz)' respecrively' Furttrennore' let M(t1't2)

denotethemoment.genefatingiunctionofthedistribution.ThenXrandXzarestochastically

independent if and only if M(tr,b) = M(tr '0)M(0'h)'

Proof. If Xr and Xz are stochastically independent' then

M(tl,t2) = E(ct1xr+t2x2)

: E(etl"eo'2)

= E(etr")E(ed')

=M(tr,0)M(0Jz).

Thus the stochastic independence of Xr and X2 implies thal the momont-generattLlg

functionofthejointdistributionfactorsintotheproductofthemoment.generatingfunctionsaf

the two marginal distributions'
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. *:,r--. -i),npi!e. thxt the molnent-generating function of the joint distribution of Xr and X: is

r:r'.'{ bv M(tr,tr)=M(tr,0)M(0,t2). Now Xr has the unique moment-generating funclion which, in

lhe contirir.rous case, is given by

' M(tr,O) = J- e'r^rfr(xr)clxr).

Sinrilarlr', the unique nromsnt-generating function of X:, in the continuous case, is given by

M(0,1:) = -J e'?'2 f:(x:)dxz.

'I'hus rr.e have

M(tr,O)M(OJt=i -f e"'rfi(*r)dxrl[J' eo"2f2(x2)dx2]

=J J " etr*r+tzxzfr(xr)fz(xz)dxr <ixz.

We are given that M(t',12)=M(tr,0)M (0,12):so

lut1t,,9y = _-J 
* 
J 'erl*r+t2x?fi(x1)f2(x2)dx1 dxz

But M(tr,h) is the mcment-generating function of Xr and X2. Thus also

M(ri,t:) = J- -j"" et1x1*t2x2 (xr,x2)dx1dx2.

The uniquencss af the uromc.nt gcnerating function implies that the two distribulions of

prohability tirat arc describcd by /r(xr).f:(xz) and /(x1,x2) are the same. Thus

/(xr,xr) = /;(xr)/(x:)
That is, il M(tr,1:)*M(tr,0)M(0,1r), then Xr and X2 are stochastically independent.

Some Special Distributions
.I.5 THI' BINoMIAT, TRfiTJoMIAI- AND MULTINoMIAL DISTRIBUTTON..

!fir is a positive integer, that (a-ri:) i =ipng* b"an-*.'x-0.1...,....n

Consirier the function Ccfined by

{x) = nc, P'(1-P)i' , x:0,1,2,........,n,

= 0 elsewhere,

whcre r; is a positve integer and 0<p<1,. Under these conditions it is clear that f(x)>O and that
n

' I f(x) = X nC* nC* P*(l-P)n-*
'. " x=0

= [(l-p)+p]n = 1.
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That is f(x) satisfies the conditions of being a p.d.f of a random variable X of the discrete type.

A random variable X that has a p.d.f. ofthe form of f(x)is said to have a binominal disrributrcin,

and any such f(x)is called a binominal p.d.f. A binomial distribufion will be denoted by the

symbol b(n,p).

If we say that X is b(5,1/3),we mean rhat X has the blnomial p.d.f
f(x) : 5g, 1C3 2C35-*, x-0,1.........,5,

= 0 elsewhere.

Example 1. The binomial distribution with p.d.f.

f(x) : 7c,. 1c2* (l-1) n'*

; x = a),2...........,7,

= 0 else where

has the moment generating function

M(t):(1/2+l/2"\7,
has mean p = np : 7/2, and has variance a2 = np(1-p)=7 /4. Furthermore, if X is the random
vaiable with this distribution, we have

Pr(0<1) = f/(x): t/r28+'7/128:8/128 and,

Pr(x=5)=/(s)

= (7U512r.)(tt2)s(11212 = 211trt
Example 2. If the moment generating function of a random variable X is

M(t)=(2/3+t/3 et)s,

then X has a binomial distribution with n=5 and p=173. that is thc p.d.f od X is
/(x) = 5C, lC3'2C:5-*, x:0,1,2....,5

0 elsewhere
Here p = np = 5/3 and o2 = np(l -p) :10/9
Example 3

Consider a sequence of indcpendent repetition of a random experiment with constant
probability p of success. Let the random variable Y denote the tatal number of failures in the
sequence before the rth success that is, Y+r is equal to the number of trials necessary to produce
exactly r success. here r is a fixed positive integer. To determine the p.d.f ofy, Let y be an
element of {y;y=0,1,2,.....}. Then, by the multiplication rule of probabilities, pr (y=l

= g(y) is equal to the product of the probability

(y+r-l) C.-r p'-r(1-p)'

of obtaining exactly r-1 success in the first y+r-l trials and the probability p ofa success on the
(y+r)th trial. Thus the p.d.fg(y) ofy is grven by
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g(y) = y+r-l c,.r p'(l-p)v, y = 0,1,2.....

= 0 clsewhere

A distributioir with a p.d.f of the form g(y) is called a negarive binomial distribution; and

any such g{y) is called a negativc binomial p.d.f. The distribution derives its narne liom the lacl
that g(y) is a gcneral term in tbc expansion olpr[l-(l-p)]"'. it is left as an exercise ro show that
the momenr generaring function of this disrribution is M(t) = p' Il-(l{r-p)er)* for t<-In (I-p). If
r-1, lhen Y has the p.d.L

g(Y) = P(l -p)Y, y * o, 1,2......

zero elsewhere, and the moment generation function M(0= ptl-(l-p)"rl-l In this specral case, r
= I , we say thal Y has a geometric distribution

Thc serics I +m+m2l2!+mr/31+.......= f 6'/1t

n{,
converge, for all .,alu,:s ofm, io en'. Consider the firnction /(x) defined by

,f(x) = r'"'n'r*t, x = 0,1,2,.,..

= 0 elsewherc,

whcre m>0. Since nt>{.r, then /(x) >0 and

that is /(x) satisfics thc conditions of being a p.d.f of a discrete tlpe of random variabre. A
random variabie rirat iras a p.d.f of the form /(x) is said lo have a poisson distribution, and any
such /(x) is called c poisson p.d. f.

Example l. Suppose lhat X has a poisson distribution with p=2. Then the p.d.f od X is

l{x) = Zxe-Ax:,x = 0,1,2....

= 0 clscwhcre

The variance of this distributio' is o2=F=2. If we wish to computc pr(l<X), we have

P(l<x) - l-P(x=0)

= l-flo)--l-e-2-0.805

approximltely.

Example

If thc moment generating function of a random wiable X is

6l
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M(t; = sl(ct'tl

then X has a poisson distribution with p=4. Accordingl, by wry of exsmplc,

Pr (X=3) = 4re4!-12er

3

(or) P(X=3)=Pr(xJ3)-Pr(X<2)=0'433 -0.238 =0.195

4.7. THE GAMMA ANp cHt-souARs DlsrRrBUTloE

The Gamma finction of X is

f(cr) = oJ 
- 

Y"-re'YdY

If <r = l, Clearly
r(r)'0J.. eYdy= 1

If o > I , an integration by parts shows that

f (cr) = (a'-1 )J' y "2 e 
-vdy= ( a -l)f ( a-l)

Accordingty, if c is a positive integer greatcr than I,

r (a) = (a-l ) (o-2) ......(3) (2{l) r(l) = (c't) !

sinccf(l)= 1

In the integral that defines f(a), let us inlroduce a new variablc x by writing y = x/p, where p >

0 Then.

r(c)=J*(rj'u e'dpO)dx

FP
or, equivalently,

I = J- l/f(o)P' *r'r"'r& fi,

Since a>0, 0>0 , and l(c)>O, we see thal

*,:fi3';::e 4,ocx<c.,

is a p.d. f. of a random variable of the continuous t)?e.

Examole

lrt X be a random variablc such that

E(X-)= (m+3)l 3-, m-1,2,3 .'.,...

3!

Then the moment generating function of X is given by the series
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M(f = 1* 4i3 I + 5132 t2 + 6!33 t3 +....

3!l! 3!2t 3!3!

This, however is the Maclaurin's sories for (l-3t)a provided that -l<3t<1. Acoordingly, X has a

gamma distribution with cr-4 and p=3

Exrmple

If X has the moment generating function M(t): 7-2q'8, l;-l/z th€n X is x? (16)

Ifthe random variable X is x2(r), then with c1 S c2, we hav€

Pr(crjX:!z) = Pr(X5 c2)- Pr(Xcc1),

since P(X=o1)=O . To compute such a probability , we need the value of m integral like

PdX-<x) = of tr6tzlztn d12-t e'\\/2 dw

f,xemple

Let X have a gamma distribution with a-r/2 , whero r is a positive integer , and p>0 .

define the random variables y = zxll. we seek the p.d.f of Y. Now the distribution function of
Yis

G(y): Pr(Y<y) = P(X< py/2)

IfY < 0 , then G(y)=0; but ify>O then

-gynG(v)-oj llllrt2 Byrz )rt2-l e -y/2

= llf (t/2) 2 rl2 y r/2-t e -y/2

ify>0 . That is Y is x2(r)

4.8 Tm NoRMAT DrsrRrBUTroN

Consider the integral

r=J*exp -lt4dy.

This integral exits because the integrand is a positive continrious function which is
bounded by an intogable function; that is,

Ocexp(y22)<exp(l/+1), -"ocy<"o, and

J ' 
"*p 

(lyl+ l)dy =2e

To evaluate the integral I, wo note that I>0 and that 12 may be written
( = -!- J* exp 1-f+z21dydz

1
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Example I

If X has the moment generating function

M(t; = 
":t':z'z

then X has a normal distribution with p-2,o). Thus, if we say hat the random variable X is
n(0,1), we mean that X has a norrnal distribution with mean p={ and variance d:1, so that the

p.d.lof X is

f(x) = 1ll2 ne''2/2, -"o <x *
If we say that X is n(5,4), we mean that X has a nonnal distribution with mean p=5 and vanance

o2:4, so that the p.d.f of X is

f(x) = I exp[ (x-5)2] -crcx<o

zlzn 2(4)

Moreoyer, if

M(t) = eat2'

then X is n(0,i)

The graph of

f(x) = 1 exp - ("-t )t, -cr<x<c,

a .'l2n 2a2

is seen (l) to be symmetric about a vertical axis through 5? and (3) to have the x-axis as a

horizontal asymptote. It should be verified that (4) there are points ofinllection at x : p I o.

Theorem l.

If the random variable X is n(p, o2), 02 > 0, then the random variable

W:(X - p )/o is n (0,1).

Proof. :- The distribution function G( ro ) of w is, since o >0,

G (to) = p1 1x- V /p < a) -- Pr (X < ao +yt)

This is,

G(o): -f"+u uc 2n exp [-1x-1t)'1tzdyx.

If we change the variable integration by writing y =(x-p)/o, then

64
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c(r) =J'- Uzx e-Yn dy.

Accordingly. thc p.d.f. g(o)= G'(ar) ofthe continuous- typc random varinblc W is

g(a):7/2n e'e/z, -o <0)<6. Thus Wisn(0,1),

Theorem 2. If the random variable X is n1p,d;, olO, thon the random variable

V= (X-tr,)2io2 is X2 (l).

Proof. Because V=Wz, where W{X-plc is n (0,1), the distribution function G(u) of V is,

foru20,

G 1u; - P4Y7:=,r; = 14- {ris W < {u.).

That is,

G(u)=2;[1u- 7/2n e'*2/2 do,o s u,

And G(u)={, u<0.

If we change the variable of integration by writing <o= y, then

c(u)-# UGye-vnay, o<u.

Hence the p. d. f, g(u): G'(u) of the continuous-type random variable V is,

G(u) :(l/ {l-;rr'o'' aun, 0< u <*,

=0 elsewhere.

Since g(u) is p. d. f. and hence

o i' g(u) ou =t,
it must be that f(/2\: viand thus V is X2 (1).

4.9 TtrE BTvanHTe NoRMAL DISTRIBUTION

kt us investigate the function

,f(x,v) = i

2no1o2l,[-*p2E[ -r6,41<co,-€<y<€,

Where, with or>0,o2>0,and -l<p<l,
22q = 1 [(x-p;) -2p(x-pr) (y-pz) + (y-pz)

l-pz crl c1 62 oz

65



M.S.University D.D.C.E. I M.Sc., Maths

At this point we do not know that the constant pl,p2,ot 2,q2t,and p represent parameters of a

distribution .As a matter of fact, We do not know that /(x,y) has the properties of a joint p.d.f . It

will now be shown that:

(a) ,f(x,y) is a joint p.d.f

(b) X is n(p1,c12) and Yis n(p2,o22)

(c) p is the correlation coefficient ofX and Y

A joint p.d.f of this form is called a bivariate normal p.d.f.,and the random variables X and Y are

said to have a bivariate normal distribution

Example: Let us assume that in a certain population of married couples the height Xr of a

husband and the height x2 of the wife have a bivariate normal distribution with pararneters

p1=5.8 feel, p2=5.3 feet, or=oz:0.2 foot, and 50.6.The conditional p.d.f. of X2, given xr:6.3, is

normai with mean 5.3+(C.)(6.3-5.8)=5.6 and standard deviation(0.2) 1-0.36:0.16.Accordingly,

given tlat the height of the husband is 6.3 feet , tho probability that his wife has a height between

5.28 and 5.92 feet is

Pr15.28 < Xz <5.92/xt= 6.3):N(2) - N(-2) =0.955.

The moment- generating function of a bivariate normal distribution can be determined as

follows. We have

M(tr,tu) = f -fe\"''2Yl(x,y1dx dy

= J-et1J1{x)[ JerzY/{ylx) dy] tix

for all real values oftr and tz. The integral within the brackels is the moment-generating function

of the conditional p.d.f. /(y/x).Since

/(yix) is a normal p.d.f. with mean p2 + p(o2loq)(x-!rr) and variance

or2i r -p2;, then

J'e'rtlylx; ay = exp lt2[1t2+p(o2/orxx-Fr)] = { zo2 t0-p2)12}

Accordingly ,M(t 1,12) can be written in the form

exp {h}rrtrp(o1<v )trtt+{ 2o2 z(l - p2)/ 2} l'- exp[1t, +t, p(ozlo r )x ] /r (x) dx.

But E(e'*) = exp[plt+(o2rt2y2j for all real values of t.Accordingly,if we set

t = t1+t2p(o2lo1),we see that M(t1,t2) is given by

exp {t21t2-t2p(a 2/ o }It t+t2 zcz z(1 p2) /2)+p 1 
(t1 +t2p(o2lo )+ o2 t(tt+tzp(o zl 9 )2 /2\
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or, equivalently,

M(rr,tz) = exp(lrltr+p2h+(d2rt2r+2poroztrt:+o2 2t2 )/2).

It is intercsting to note that il in this moment- generating function M(tr,h),rhc correlatron

coefficient p is sel equal to zero, then

M(rr,b) - M(r!,0) M(0,1r).

Thus X and Y are stochastically independcnt when p=0, If, convclsciv,

M(t;,t2) = M(t',0)M(0,h), we have eF 
nro:'rr: 

=l.Since each of o1 and o2 is positive, lhen p=g.

EXERCISES

(l) lf P(C'P0 and if C:,Cr,Cr, ... are mutually disjoint sers, show rhar

P(C2 uC3v.../Cl) = P(C1C;)+p16y'C1;+....

Q\ Prove that

P(C1nC2nC3nCd = P(Cr )P(Cr,'Cr )P(Cy'CrnC:)P(Cy'CrnC:nCr).

(3) A hand of 13 cards is to be d€lt at random and rvithout replacernent from an ordinary

deck of plalng cards. Find the conditional probability that there are at leasr rhree kings

in the hand relative ro the hlpothesis thar the hand contains at least two kings.

(4) A bowl contains l0 chips. Four olthe chips are red, 5 are white, and I is blue. Il3 chips

are taken at random and without rcplacement, compute the conditional probabilitv thar

there is I chip of each color relative to the hypothesis that there is exactly I rc<! chip

arnong the 3.

(5) Let Xr md Xr have the joint p.d.i f(x1,xr)=.r1r+x?. 0.{xr.:1,0<x2<l,zero elso whcre. f.inri

the conditional mcan and variance of X2given Xl=r,1,0<x1<1.

(6) Let (xr,xt):21 x1?x;r, 0<xs<x1<1, zero else whcre, be the joint p.d.f . of X1 :rnd X2. Find

the conditional mcan and varience of Xs, given X2:x2,Ocx2<t.

(7) lf Xr and X2 are random variablcs of the discrete type having p.d.f. (x1,x2) = g l?:y,) /

18,(x1,x2 = (l,l),(1,2),(2,1),(2,2), zcro elsewhcre, determinc the condirional mean and

varience of X2, given X1 = x r, xl=l or 2

(8) Let X1 and X2 have rhe joint p.<t.f. f(x1,x2) describcd as follows:

6',7
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(x',xz) {0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

(xr,xz) l/18 3/18 4/18 3/18 6/18 1i18

and f(xr,x2) is.equal to zero elsewhere. Find the two margiual probability, density

functions and the two conditional means.

(9) Let the random varibales X and Y have the joint p.d.f

(a),/(x,y) - 1 , (x,y) = (0,0), (l,l), (2,2), Zerc elsewhere

J

(b) ,f(x,v) = I , (x,y) = (0,2), (1,1), (2,0), Zerc elsewhere

3

(c)./(x,y) =l , (x,y) = (0,0), (1,1), (2,a), Zerc elsewhere

3

In each case compute the correlaiiolr coefficient ofX and Y

{10) Let X and Y have thejoint p.d.i described as follows.

(x, v) | (1,1) (12) (1,3i ,.2,1) (22) (2,3)

4

l5

and 7 (x,y) is equal to zero elsew|ere, Fii'rd the ccm;ation coeffcient p

(i i) Letl(x,-v):2,0 <x<y. 0 <y< 1,zero elservhere, be the joint p.d.f of X and Y. Show that

thc conCitional meaiis are, respectively, (l+x)i2, 0<x<1, and y/2, 0 < y < l. Show that the

coneiation coeflicient ofX and Y is p =7r.

(12} Show lhat the randcm vaiables Xr and Xz with join p.d.f /(x1,x2)=12x1x2

(i-x2),0<x:<1,0<x2<1, zr:r.r flsewhere are stochastically independent.

(1J.} if thc random va"riables Xt,Xz h::te the join p.d.f /(xr,Xz):2e-'r-'' 0<xr,xz,0<x2<co, zero

elsewhere, show X1 and Xz are stochastically dependent.

( ! 4) Find Pr (0<X1<1/3, 0<X2<1/3) if the random variable Xr and X2 have ttre joint p.d.f

(x1,x2) = 4x1(1-xz),O<xr<1,O<xz<l, zero elsewhere.

(15) If ihe moment -generating function of a nndom variable X is (1/3+?3c)5, find Pr(X =

2or3)

(16) The moment generating function of a random variable X is (2/3+1/3et)9. Show that

Prfur-2ocX<p+2o) = *=rsI(9/xx t/3)x(2/3)e'*

24
15 15

311
15 15 15
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(17) IfX is b(n,p), show that

EpUn)=p and E[QVn-p)2J = p(t -pyn

(18) I.t Y bc the number of success in n indcpcndent repetitions of e random experiment
hrving thc probabirity of gucccss v2r3. rf n=3, compurer pr (2<y); if n=5, compute
P(3sro

(19) Lrt X bc b(2,p) urd ter y be b(4,p). If p(X>l)5/9, find pr (y>t).
(20) Show that thc moment gencration fiurction of the negative binomial distribution is

M(t) = pr[l{r-p)a]''. Find the mcan and vgriance of this distribution. Hint. In the
eu{rmation rcsp€senting M(t) , make use of the Macleurin"s series for (l -<o)..

(21) Ifa fair coin is to$ed 8l rEndom five independent times, find thc conditional probability
of five heads relgtivc to thc hpothesis that thcre are at least four heads.

(22) lfthe random variable X has a poisrwn distribution such that

h (x =l ) = Pr (x=2), Iind pr(X=a).

(?J) Thc moment generating firnction of a random variablc X is ea (o"r). show rhar
Pr (p -2c<X <F+2o)-0.931

(24) Compute the mcarues of 8k"'vn"'E and turtosis of thc poisson distribution with mean p

(25) tct X and Y have thejoint p.d.f. / (x,y) = e-2 I 1xt 1y-x; t1

y=O 1J,..-.; x - 0.1 ......5 Zao elscwhete

(a) Find the moment-generating function M (tr,h) of rhis joint distribution.

(b) computc thc means, the variances, and the correration coefficieni ofX and y
(c) Detenninc lhe conditional mean E1X > y). Hint,

(26) If (l-2t){, t<l/2 is lhe mom.,rt -g€nerating function ofthe random vrriablc x, find
Pr (X<5.23).

(27). If X is 12(5), daerminc rhe congrants c and d so thar p(C<X<d)

= 0.95 urd p(X<cH.025

(28) l.et X have I giamma disribution with p.d.f /(xFl/s2 xe-x/p,ocx<€, zero ersewhere. If
x=2 is the unique modc of the distributioq find the parameter p and pr (X<9.49).
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(29). Compute the measures of skew ness .md kurtosis ol a gamma distribution with

parameters a and p.

(30) Let X have the uniform distribution with p.d.f/(x){,1<x<1, zero elsewhere. Find the

distribution function of Y=-2in X. What is the p.d.f of Y?

31. If N(x) = *1t.'lZnenn d,',

show thar N(-xf l -N(x).

32. If X is n (75, 100), find Pr (X{0) and Pr (7ocXcl0O).

33.

34.

If X is n (p, d), noU U so that Pr t-b<X - p/o<bl :0.90.

If X is n (p, d), sho* thal E (lX-Fl)-Jlr!.

35. I-et the random vsriable X have the p. d. f.

I $)=2/ 2r e'ffi, kx<,. . zero elsen hcre.

Find the rnean and variarice of )i.. llint. {,'onipulc E (Xi direotly arrd li {X]) by cornparing

that integral with thc intcgral representing thc vari*,;cc ol'a variablc that is n ({},

l)

16. Let X be n (5, l0). Find Pr [0.04<X-5)2< 38.4].

37 . Lct X and Y havc o bii,ariate normal distribution wilh patametirs

' ,."" pr = 3, F2 - 1, o21 = 16,6r: = 25, and p = 315. Determine lhe following probabilities :

(a) P(3<Y<8).

(b) P(3< Y <8lx=7).

(c) Pd-3< X <3).

(d) P(-3< X<3/r4).

38. Let X and Y have a bivariate normal distribution with parameters

pr=5, lr2= l0dr =ldr=25,andp>0.

If P(4 < Y<16/x=5)=O.954determine p.
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I]NIT V

RAilDOU VARHALES

5.1 Sampling Theory
5.2 Transformation of variables of fhe discrete Rr?c
5.3 Transformation of variables of the continuous t].pe.
5.4 The t and F Distributions
5.5 Extension of change ofvariable techniquc
5.6 The moment generating firnction tcchnique.
5.7 'I'he Distributions of X and nsZol
5.8 Exceptions of functions ofrandom vuriables
5.9 Limiringdistributlon
5.10 SrochasticConvergencc

5. i I Lrmiting nroment- Generating functions
-5.12 The central limit Theorem

EXERCISE

5. I SAMPLINGTFEORY

Dellnltlon:

A function of one or more random variabres that does not d@€nd upon any unknown
parameter is called a statistic.

Definitiou:

I-rr xr'x2-..,xi denore n mutually stoc;rasticauy independent random variabres, each of
which has the same but possibry unlcrown p.d.r (x); that ir, the probability density ftrnctions of
Xr.X2,....,)G are, respectively, fi(xr) = (xr),fi(x:) = (xr), ..,. ,f"(x") = (xn), so rhar thejoinr p.d.f.
is (x 1)(x2).-. (xn). The random variables Xr,X:,...,)k are then said to constitute a random sample
&om a distribution that has p.d.f. (x).

Deflnltion:

l'et xr ,xr'....'xn denote a random sampre of size n fiom a given distribution . The
slatistic

7l



M.S.Univenitv D.D.C.E. I M-Sc,, Matbs

x:Xl-X.+...,..+X = I X

n i=l n

is callcd thc nlcan ofths random sample. and the slatistic

S: = : (X,-X)l ru r,2 X:

i-l n ,, n

is called thc variance olthe random sample.

Exrmple :

lrt the random variable Y be distributed uniformly ovcr the unit interval O<y<l ; that is

the distribution function of Y is

G(y) = 0,ys0

: y,o<y<l,

= I,lSy

Suppose tlut F(x) is a distribution function of the continuous type which is strictly increasing

when 0 < F(x)<1. Ifwe deline the random variable X by thc relationship Y - F(X), we novv show

that X has a distribution rvhich correponds to F(x). lf 0<F(xFl , the inequalities X: x and F(X)

:F(x) are cquivalent. Thus, with 0 <F(X)<I, the distribution function of X is

P(xlxF P(F(xX F(x)l=PrlYsF(x)J

because Y =F(X). However,P(Y9)= G(y), so we have

Pr(X5x)= G(F(x)l=F(x). OcF(x)<l

That is the disribution function ofX i F(x).

'lhis result permits us to simulate random variables ofdifferenl types.

5.2 TRANSFORMATIONS oF VARIABLES OF TM'DISCRETE TYPE

Ar altemative method of finding the distribution of a function of one or more random

variables is called the change ofvariable technique.

Lct X have the poisson p.d.f

(x) = g r6-t', x = 0,1,2,.......

x!

'12
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= 0 elsewhere.

l-€t A denote the space A = {x;x = 0,1,2,3.....}, so rhat A is the set where f(x)>0. Define a new

random variable Y by Y = 4X. we wish to find the p.d.f. of Y by rhc change-of-vanable

technique. L-et y -- 4x. We call y = 4x a, transformation ilom x to y, and we say that thc

transformation maps tlre space A on ro the space Ii = {y;50,4,8,12.....}. The space B is obraincd

by transforrning each pcint in a in accordance,with y = 4x.

1'hc p.d.f . g(y) of the discret* type

g(y) = p(y-) =pr{x-r-/4} = pvl4d-r., y=0,4,8.....

(y/a)l

[t = elsewhere"

Example . Let X have the binomial p.d.f.

(x)'. 31 2- l, x=0,1,2,3,

x!(3-x)l 3' 3s''

= 0 clsewhere.

We seek rhe p.d.f. g(y) of the random variable Y=X2. The ttansformation y = u(x)=x2

rnaps A = {x;x=O,1,2,3} on 1o B={y;5-0,1,4,9}. In gancral, y=x2 doe.s not define a one-to-one

transformation; hcre, how evcr, it does, for there are no negalive values ofx in A:tx; x=0,1,2,3 |.
That is" we have the single -valued in verse function x : w(y) = { y (not - {y ), and so

e(v)= (JD = JJ z.t9- l, y = 0,1 ,4,9,

r fli r:-./l-t: '{y 3"{y

'= 0 elsewhere

Exemple

L,ct X1 and X2 be two stochastically independent random variabtes that have Poisson

distributions with means |rr and p:, respcctively.

'lhc joint p.d.f of X1 and X2 is

F t 
tl 

;t2d6't'I 
r'2

x | !x2! xr=0. 1,2,3,...., xz=O,1,2,3,..,

and is zero elsewhere. Thus the space A is the set of points (xr,x2), where each of x1 and x2 isa

nonnegative integer. We wish to find the p.d.f of Yl=Xr+X:. If we usc the change of variablc
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technique , wc need to define a second random variablc Y2. Let uS ChOoOe Yz in euch a way that a

simplc

one-lo-onc traffformstion ,For example, take

to-one tsansformation that maps A on to

YrXz. Thcn yr=xt+x2 atrd yFr(2 t€prcs€nt on+

B ={(yr,y);yz - 0,1,...,}t and yr=0,1,2,..}.

Note lhal i(yr,yz)e B, then O< y2 < yl.Thc

xr = yr-y2 and x2 = y:. Thus the joint p.d.f. of Yr and Yr is

g(Yr,yd : pr!t'9pr!16lt{:

inveme fiuctions ane given by

and ic zero elsewhere .

yl
Br0r) = r,.ol

' e-Pl{2

= Yt!

$r-yz)!yz! $r"yJeB,

Consoquently, thc marginrl p.d.fof Yr is given by

g(Yr'Yz)

)Jrvr-o Yr I Urtr"t2p/2

(yr-yz)!Y:l

- Gr+FrPr*r€
yr'{,1,2,......,

and is zcro clsEwhere. Thgr is, Yr = Xr + Xr heq a Poicson distribution with parameter tr!+p2-

5. 3 Tn NsroRMATtot{s or VARIAB

Errmple.

Lct X be the random variablc ofrhe continuous t)?€, having p.d-f. S

f(x) = 2x, O<xct, (x)={ clscwhcrc

Herc A is the space {x;0<xcl }where (x)>0. Dcfrne the nndom vrriable y by y--8xr, ard

consider the transformation 5-8x2. Under the transformation 58x', thc sct A is mapp€d on to

the set B={y:Ocy<8}, and moreovcr the transformalion is I to l. for every O<a<b4' the event

acv<b wilt occur when and only when the evcnt Yr 
t,l a<x<l|L r'Jb occrus because th€,fe is a one

to on€ corrFpondcnos bctwccn the points of a and b.

Thus

Yr!
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Pr(a<5u,1 = pr (t/2 31RX< % "$)-

! t^EE 
2*d*

t^tT
By chqgging the variable of
x=1/231y. dx = I

. dy 6yot
and accordingly, we have

integration from x to y by writing y = 8xi or

Pr(a<y<b): .lozlrfy 1t py

2 6tztt

=Jof_ot
6Ytrz

\i1,. : tliis i: rrue for every 0<a<b<g, the p.d.f g(y) cf y is rhe integrand; thnt is,

c(9 = I o<y<8,

6y"t = 0 elsewhere

g(y) = 0 orherwise

"ixarnple: 
Lct X have the p.ct.f.

f(x) =1, Oa<<I,

= 0 elsewhere.

we irlve ro rhorv that ihe random variable y= -2 In x has a chi-square distribution with 2
{ieLre?s of freedom. Herc the hansformation 3r=p(x)= -2 ln x so that o:(y) = e_y/2..Thespace A is
A '{x;0'+<l 1 which {qry to one transformation y -_2 in x maps onto B={y;0<y<co}. The
J:rcobian {,}i the transformafion is

J * dx = 6o11'){ e-yn

dY2

,{c,:ording, the p.d.f g(y) of y :_2 In X is
g\v) -* Ae"Y/)1t1 - l/2 e'Yn, o<y<a,
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= 0 elsewhere, a p.d,f that is chi-square with 2 degrees of freedom. Tbis method of finding the

p,d.f of a function of one random variable of the continuous t1,pe will now be extendcd to

function of two random variables of this t)?e. Again, only firnetions that defrne a one-to-one

transformation will be considered at this time. Lst yr=pt(xl,x2) and y2:tl2(xl#2) define a one-to-

one transformation that maps a (two-dimensionat) set A in the x1,x2 plane onto a (two -

dimensional) set A in the yl,y2- plane. If we express each ol xt and xz in terms of yr arld,v:. we

can write x1<01(y r,y2),x7'lo2(yr;yz). The determinant of order 2,

&r3
4r oYz

ye?
ilr 4z

is caucd the jacobian of the nansformation nnd will be denoted by the symbol J

Exanrpie

Lpt the random variable X have the p.d.f

/(xfl,txxcl,
= 0 elsewhore

and let X:,X: denoted a random sample from this disfribution. 1'he joint p.d.f of Xl and X2 is

then

ql(xr,x?)=fl xrXx?Fl, 0<xr<l<,0,x2<1,

= 0 elsewhere

Consider the two random variables Y1=X1+f2 and Yz=Xr-Xz, w1 wish to find lhe join p'd'f of

YrarrdY:.HerethetwodimensionalspaceAinthexr,xzplaneisthatofExample3ofthis

ssction. The one-two-one harsformation yl=xi+x2' y2=xt-x2 maps A onto the space B of that

example- lvloreover, the Jacobian of that transformation has been shown to be J = -ll2. Thus

g(yr,yz) = 9lt/2(yfty2\,t12 (vr-v:)llJl

= fltt2(y;y)1Jlt/2(yyy2\lJl-tt2 (vr'v:2=B)

: 0 elsewhere

Because B is not a product space, the random variable Yr and Y: ale stochastically dependent'

The Marginal p.d.f of Y1 is given below
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gt0r) = .r,l'' 1/2dyr =yr< I

2-y , .= 'Jr:-r /,dyz=2-y, lsy€2,

= 0 elsewhere

In a similar marurer, rhc marginal p.d.f gl$z) is given by
c2(y2) = -,r2 Ilt v2dy2 = yl, ocyt<l

= ,r'''J''" % dlr = l-Yz' l<Yt4'

= 0 elsewhere

Erample

*t y1{x1-x2) where x. and x2 are stochasticaty indcpendcnt rrndom variabrce,
each being X2(2). The join p.d.f of Xland X2 is

,f(xrXxt = t/4 exp(-x1_x2),0<xlcco, O<x2<co.

= 0 elsewherc

kt X,=at so that yl =l/2(x1-x2),y2:x2, or xy:2y1+y2, x2:y2 define a one-to_one
traisformation from A={(x1;x2); O<x l<o, kx2<co} onto B= {(y1,y2);_2y1<y2 and Ocy2, -
cocy2<co) |, Thejacobian of the transformatioo is

J=

Hence &e join p.d.f of y1 and y2 is

g(yr,y:)= 2 e_yry2 (yr,yz)eB

= 0 elsewhere

Thus the p.d,f of y1 is given by

cr(y') = -2y'l- % 

"-!|ilr. 
dy2 = yz ex1, -"o<yl<0

-rJbu2 

"*yrlzdyz=t/? 
e-yz, 0<yl<co,

or

gr(}r) =l/2 e-Yl , -{o.<yr <.o

This p.d.fis called the double exponential p.d.f

,ll"
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5. I TIIE t AND F DISTRTBUTIONS

Lcr w denore r random variable thar is n(0,1); kt v denote a random variable rhat is

r?(1); and ler w and V be srochastically indcpcndent. Then thejoint p.d.f ofw and rhat ofv or

q(o,v) = I ll2n -w712 I /r{r/2)2r12 vr/2-l e"'/1, -no<o<co, kv<€o,

= 0 elsewherc

Dcfine a neu, randorr var.;ble T by writing

T-W.r.Jtlr

Thc change-of-variable technique will be used to obtain the p.d.f gt(r) of y. The

cquations.

r =o/{t[nd u:v

dcfine a onc-lo-ono transformation tht maps A
.' ..- t.,iJ- {" - u-u, the absoulle value of rhe Jacobian

Ui = r[ii rf rrccorrlingly the joinr p.d.lof 'f and U = V is given by

!(t.u) = rp(t I'lr, u) lJl

- ,,1 '! "*p {-u (llr2rrl _r'u-

lT;r rFz z'' 2 .'F

- tt t?ilrtz)z': urrZ-l exp l-ul? ( l+r2lr) l

={(W.v);-oc<co}. Since

of the fansformation is

-, [.] elsewhcrr: -co<t<cc, Q<u<.c

'l'hc n:arginal p.d.fof T is then

I I it)= -,, J 's(t,u) du

= 0J" u(r+l) 2-l cxp -yi2 (l+12lr) dx

z'6,t ',FiT 2"2

In this intcgral let

x = u I I +t:ur]r2 and then

gi(t) = 
*j 

22/l+t2 h) c'' 2{'-
,tZnr 

^tr:Z Z* f -v, A* -6.(l<co

fhus rf H'rs n(0,1) is n(0,1), if v is 12(r), and ifw and v are stochasrical independent,

thcn
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r=wffi
5,5 Extensions of the changs.of-variable Technique

Consider an integral of the form

J...e Jg(xr,x:,.. ,x n) dx1dx2...d x n

talen over a subset A.of an n- dimensional space A. Irt
Y:: ur(x r,xz,...,xny, ]2 = u2(x 1,x2,..., xn), ...

yD : un(xt,..,xn),

together with the inverso functions.

xr= wr(Yr,yz,..,yn), 
", 

= *r(y,,yr,..,yn) ...

)G = wn(yr,yz,..,y")

Define a one to one transformation that maps A and B in the y1,y2...yn space (and hence
maps the subset A of A and on to a subset B of B). L€t the first pariial derivatives of the inverse
Itrnctions be continuous and let the n by n determinant (called the Jacobiaa)

dxr axr ..... &r

4r 4z ay,

F:
?xt }xz ..... dxz

dyt 4z ay.

Axn Axn Axn

Yr 6yz fun

not vanish identically in B . Then

Ja,... J.p(* r,xz,....xn)dx 1,dx2..... dxn

= Ju... J,plw,(y,,...,yn),wz(yr...-,y")....w"(yr....,y")l x lJ ldyl dye.... dyn

The joint p.d.f. of the random variables y1 = ur(Xr,&,....X"),

'19
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Yr = uz(Xr,Xz,...Xn),.... ,Yn = u.(Xr,Xu....Xn)- where the joint p.d.f of Xr,X:-..Xn is <p(x1,....,xn)

is given by

cor,yr,..yJ = u qlwrOr,....,yJ,...,wn0r,...'Yn)1,

when (yt,y2...,yr) e B , and is zcro elsewhere.

Exampk I:

l,et Xr ,X2,..,Xr*1be mutually stochastically independetl random variables" each having a

gamma distribution with p=I. The joint p.d.f of lhcse variables may bc wriiten as

g{x r,xz,...,xr+r) = ,-,flt'' l/F(o;)x1 "i-l e-'1, 0<x;< o,

= 0 else where

Ler

Y,=Xi
X1+X2+...fX1..1 , i =1,2,...,k

and Yr*r=Xr+X:+...+Xr*r denote k+l new nndom vrriables The associated

lransformation maps A={(xt,...,xr*r); 0<x;<m, i=I,...*+l} onto the spsce.

B ={(y,.. . yL.yi+l);0<y,i =1,...,k,

y, +. . . +y1< 1 ,O<yr* r <o).

Thc single-valued inverse functions arc xl = ytyk+t,....xr= YUr.r.

.r-'.r1 =ypl(l -yl-.. "-yk), so that the Jacobian is

J-' Yr,.*r 0 ... O t'
0 y*', O t,

0 0 yr,.r yk

-Yr+r "yr+r ... -yk+r (l-yr-..-yr.)

= Y&r* r

Hcnce the joint p. d. f. of Yr, ...., Yr,, Y r.r is given by
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I k+t I

..-.., Y t Jt.yt...,.yr.ya

-v

-l r l+lv

l+l

f(a1)... I'(c4) I- (a1_1)

provided that (y1, ..., y i, y1*1)eB and is equal to zero clsewhcrc,

The joint p. d. f. of y1, ....., y 
1 is

g(yl, .. , y\) = f (ol+...+ei+t) yror -l ... Y r"r-l (l-y1-.,.-y dar*r *l
l(ar... f (or"r) 

When
0<yf i =1, "", k, y|+...+y' <1, while the frnction g is equal to zero crscwbcre, Rrndom variabres
Yr' "'' Yr that have a joint p.d.i of this form are seid to have a Dirichlct distribution wrth
parameters dt, ...., ck, €rr*r, and any such g{yt,...,y r) is called a Dirichlct p.d.f. It is secn, in the
special case of k=1, that rhe Dirichret p.d.f. lecomes a beta p.d.f. Moreovcr, it ir also cleer from
the joint p.d.f of Yr,...,y r, yr.r thal ynr has a g:unma disbibution with parameters
ctr+" 'rd*+crLrr and P=l and that yr*r is stochrsticrlry independent of
Yr, Y2, ..., Y k.

Now, let X have rhe Cauchy p.d.f.

(x)=lldl+x2), -<o<x<6,

and let Y-X? We seek the p.d.l g(y) of y. Consider the traruformadon 5*2. This
tralsformation maps the space of X, A={x; -co<x<co}, onto B={}r0<) <€}. However, rhe
transformation is not one-to-one. To each yeB, with the exception of y{, there conespond two
points xeA. for exarnple, if y=4, we may have either x = 2 or x = _2. In such an insrance, we
reprcsent A as the lnion of two disjoint scts Ar and A2 euch fhat y=r2 dcfines s one-tmne
transformation that maps cach of .A1 and A: onto B. If we takc Ar fo b€ {x;-€o<x<0} and Az to be
{x;03<o}, we see lhat A.1 is mapped onto {S0<y<co}, whcrc as A2 is mrypcd onto {y;05y<co},
and these sets are not thc sarne.

Take Al={x;-€o<x<0} and A2:{x;Ocx<co}. Thm y = x?, with thc invcrsc x = _S, maps
Ar onto B - {y;O<y<'o} and the transformation is one-to-one. Moreover, tbc transfionnation y =

8t
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x2, with inverse x =-.[, maps A2.onto B ={y;Ocy<o} and the transformation is one-to-one.

Conslder the probability P{YeB), where BcB. t.et Az = {x; x = -f, yeB}cA1 and

let Ar={x ; x = {y, yeA.a. Thus we have

Pr {YeB) = P(XeA'3) + PdXeA.r)

= Jr: f{x) + l^4 (xxx.

In tlre fint of these integrals, Iel x = -{ n* the Jacobian, say J is -tl 2f moreover, the ser Ar

is mapped onto B. In the second integral let x = f. Thus the Jacobian, say J2, is l/2f;
moreover, lhe{et A.r is also mapped onto B. Finally,

pr(YeB) = f 
' n-Jill rn{y I ar. Iqr{ilrnJvav

=i" t t(- 6) t f{r{-i lt /2,'l-y dy.

Hencc the p.d.f. of Y is givcn by

g1y; = rnfyt(-Jy)+f(./y)1, y€8.

With (x) the Cauchy p.d.f. we have

g(y) - llx(l+y){y] 0<y<-,

= 0 elsewhere.

Let g(x1,x2, ....., x,r), be the joint p.d.f. of Xr, Xz, ...., Xn, which are random variables of the

continuous llpe. kt A bs the n-dimensional space where g(x 1,x2,.....,xn), ...,5 = p"(x1,x2,...,xn),

which maps A onto B on the !r,!:-..,y', space. To each point of A there will correspond, of

course, but one point in B; but lo a point in B there may correspond more than one point in A.

That is, ths tmnsformalion may not be one-to-one. Suppose, however, that we can represent A as

the union of a linite numbcr, say k, of mutually disjoint sets ,{1,A2,.... A1 so that..

Y1 = |r1 (x 1,x2,...,xn,....., yn = gn(x 1,x2,....,x1)

Dcfinc a one-to-one transformation of each A, onto B. Thus, to each point in B there will

correspond exactly onc point in each of A1, At,.... Ar.

Lct xt = <rlli(y1,y2,....,yn),

x2 = (02i(yr,y2,....,yn), i =1, 2,.....,k,

:

xn = oni(yr,y:,....,y"),
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::::::::,:::"ps 
or n inverse tuncrions, 

"* *first partiel denvatives be continuous and lct each

dalri 6olr, ..... &ol i

4r Ayt *n

'....&oa;

q" i =1,2,....., k

&oni &1,,......9I-

4, }yt 4n

oaz, &o:i

uYt AlZ

not identica'y cquar ro zero in B . Fronr a consideration of the probability of the union of kmurually excrusive evenrs and by apprrng rhe change of vanable rorr.nu" a *, ol"i"o,rro ",cach ol'thesc ev3nb, it can be sc€n that the joint p.<l.L of yr= ur(Xr,X:,...,Xn), y2 =u:{.\r,X:,-..,Xu),.... Y" = u,(Xr,X:,...,Xn) is given by
g(yr'y:,"',y") = tri=r 

r Ji l g[wri(yr,...,yn)....w*(yr,....y")], provided ftat (yr,y2,...,y")€ Band equals zero elsewhere. The p.d.f. of any y1, say y1, is then
gr(yr ) = -1.* ..."J.* g(y,,y2,....,y")dy2...dy".

f)nuuple 2;

To illustrare rhe resulr just obtained , take n =2 and let Xq , X: denoE a random sample ofsize 2 from a distribution rhat is n(0,1), Thc jointp,d.f of Xr and X: is
(x1,x21 = I/2t exp 11-x,2+x2r;/2;, -co<x 

r <oo,-GXz<co.

Lct Yr denote the mean and let y2 denote twice thc vE
associated transformation is 

r z \rerure lwrce ltrc vanance of the random sample. The

l r= x;+ta'12,

y2= (xt-xi2/2

The transformation maps A={(x1,x2); -o<x r(co,-@<xl<ao} onto B ={(yr_yl); -co<yr<cD,_:o<y:<oo l' But the rransformation is not one-to-one because, to each point in B, excrusive of
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points whon y2-0, there corrsspond two points ia A. kr fact the two groups of inverse functions

are

x,=trfiJi' x2:Y;t$2/2,

Xr=yr+dil2 y:y1-.1y212.

Moreover the set A cannot be represented as the union of disjoint sets each of which

rurder our transformation maps onto B. Our difiiculty is caused by those points of A that lie on

the line whose equation is x2 = x1 . At each of these points we have Yr: 0 However ' we can

dehne f(xr,xr) to be zero at each point where x1 = x2. we can do this without altering the

distribution of probability , because the probability measule of this set is zero. Thus rve have a

new A={(xy,x1); -co<xl<€,-co<x2<co} x1 + x2} . This space is the union of the two disjoint sets

A1={(x1,x2); x2>x1} and A2={(x2<x1); x2<xl } J Moreover our transfolmation now defines a one -
to-one transformation of each Ai,i=1,2, onto the new B ={(yr,yl); '6<yFco'-.r<y2<oo}. We can

now find the joint p.d.f. say g(y1,y2), of the mean Yr and rwice the variance Ya of our random

sample.

and

= 'l2l2T e'"i7 1

lJrl: lJrl = l/{2yr. rhus

s(y1,y2):r/2n exp l- (vr674'7 - (y.+',1 ytl2)2I |/"lzvz

+ y2 n exp l-yt- ,,1-yz/2)2/2- (vr"lyzn\\ ttlliy,

yr%'1 e -vuz

-co<yf <co,-co<YZ<co)

The mean Yr of our rurdom sample is n(0,1/2); Yz, which is twice the variance of our sample ,

is ,x2(l) ; and the two are stoshsstically independent. Thus the mean and the variance of our

sample are stochastically independent.

5,6 TFE MoMENT. GONERATING- FUNCTIqLTEETNIqE

Let rp(x1,x2,x3.......x.) denote the join p'd.f of the n random variables Xr, Xz ""Xn' Tirese

random vanables any or may not be the items of a random sample &om some distribution that

hasagivenp.d.f(x)-.l,etYr:ur(Xr,&'x3"""'X")'WeseekSOr)'thep'dfoftherandom

variable Yr. consider the moment-generation fi.rnction of Y1. if it exists, it is given by

Jzr(ri4
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M{t)=E(etv,i)=-fet}rg(yr)dyr in the continuous case.

Ef,tmple I

Let the stochasticaliy independent random variables Xr and Xz have the same p.d.f

l$Yxt6, x:1,2,3
- '* * eisewhEre

that is the p.d.f of Xr is /(xr) arrd that of X: is l(x:) ; and so the joint p.d.f of Xr and Xz is

.f(x r),i(x:i = x;,x1136 x1=i,?,3, x2 = 1,2.3

= 0 elsewhere

A probability, such rs Pr(X1=?, Xr:3) can be seen in"rmediately to be (2X3)/36=1/6.

Considet a probability such as Pr(X1+;r-3). the computation can be.made by first observing that

the event X,+a, =3 is the union exclusive of the events with probability zero of the non mutually

exclusive events (X1:1, {r=2 ) aad {Xi:2, Xr). The

Pr(Xr+X?=j) = Pr(X!=1,X2=2)+ Pr(X1-2,X2=i )

= {lX2il36+ i2)(1)/3ir = +r"lc

More generally , iet y represent any oi tiie nrrmber 2,3,4,5,6. The probability of each of the

events Xr*Xr = y,y"=2,3,4,5,6 can be computed. Ler g(y): Pr(Xr+X:?). Then the table

gives the values of g(g for y 2,3,4,5,6,. For ali the values of y, g0,,, = () . Now, define a new

mndom variable Y by Y = Xq+X2, and the we have to calculate the p.d.f .g(y) of this random

variable Y. we shall now solve the same problem and by the moment generating function

iechnique.

Now the moment generating function of Y is

M(t) = E{e t (xr rx2))

= E(etxl . efi2)

= E(e'xr)Ee(t'r), Since X1 and X2 are stochastically independent.
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Theoram l:
Let Xr, Xz, ... , Xn be mutually stochasicated independent random vrriables having,

r€spectively, the normal distributions n(p1,o12),n(p2o2t), ...-d n(po,on2). The random variable

Y= klXn+[212t ....+ kn, k2....,Ko are rcal constants, is normally distributed with mcan kr]rr + .....

+knltn and variance k21o21+...+k2no2n.

Proof :

Since Because Xr,X;, ....., Xn rc mutually slochasticatly indepmdeot th,e ir!*g*en!

generating function of Y is given by

M(t) = Elexplr(krXr+ krXr +...+knXn)]]

= E(e*r xr)E(e'k2x?) 
... r(ek*)

Now

E(e"\' ; = explpit+q:t2l?1

for all real t,i ..1 ,2 ....,n Hence wc have

E(cri'*i) = expIp,(k;t;+ s1']1i1' 721,

That is, the moment gcnerating function of Y is

M(t) = " fi, ., exp[111u;1t + k:;o;2)t2l2]

- exp (( | ,r 
n 

k,u, ;r*rn, kitoi2)t2 /21

But this is the moment generating function of a distribution that is

ll( 'tr k,p,, 
n r, k,t o,';. Hcnce the proof.

'l'h corem 2:

Lct X1, X2,... X" bc mutually stochasicated independent variables that have r€sp€crively

the chi-square distributioo Xirr), X2(q)..., and X2(m). lhsn the random variable V:Xr+X2+...+

Xn, has a chi-square distribution with rr+...+ ra degrces of &cedom that is, Y is X2(r;r..+....rn;

Proof.

The moment gcncrating func n(action of Y is

M(t) = E (cxp[((Xr +X:+....+X"))] is

: E(eur)E(ed)...8(€u)
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Because Xr, Xt X" are mutually stochastically independent

E(eer; : (t-zr'tn t<lla,t<!Z ..-.....n

We have, M(t) : (l-20 -n2+r2 " '- ttn t'' . ttu2

slnce

rcspectively that is X is n(p,d/n)

Example r t€t X be the mean of a random sampte of size 25 .from I disfibution that is

n(7.5, ! 00). Thus X is n(75,4) Then for instance,

Pr(?r<x <;e) =. rygys) - N(71-7s)

= N(2!r'I(-2) = 0.95a

But this is the moment generating function of a distribution that is x2(r1+r2+/...+rn).

Accordingly Y has this ch-square distribution .

Also, let Xr,Xl,...,X" be a random sample of size n from a dishibution that is n(p,c2) Thus, each

of the randomk vuiable (Xip2 lc2, i=7,2,.,..n is x211). More over these n random variables are

mutually stochastically independent . By date, the random variable Y:tEn [x(Xi-p)2 /o2, i=1,2..n

is x?(n).

Let Xr , Xz,...,Xn denote a raldom sample of sizo n 22 from a distribution that is

n( p,62 ). llere we discus about mean and the variance of this random sample that is the

dislribution ofthe two statistics

X = -Er Xi/n and S? ='Er (XrX)2 / n

The problem of the distribution of X. the mean of the sample is solved by the use of Theorem

I if section 5.5. We have here , in the notation of the statement of that theorem

,irr=rn2=....pn=....p. orz = or2 = dn=o2 and kr=kz =....=kn -lln . Accordingly Y = X has a

normal distribution with mean and variance given by
nxr(l/np)=lr 

rE (l/n)2 qt7=dln
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We now take up the problem of the distribution of 52 the variance of the. random sample

Xr,...&...X2 from a distribution that is n(lr,o2 . Consider the joint distributiou Yr=Xr, Yz=Xz ,

%=&.
The corresponding transforrration

xl = nyl-y2.......yn

Xr=Vt

Xn=Yn

has Jacobian n Since

2&2c2

2o22c2

nl,t*, -lr)' :' ;, 1x;- r + I-p)' : "x,(*,-l)t + nf:t- ;2

because 2(;-p) " Il (xrD = o ttre join p.d.f of XIXzX3..'JG

can be written

(l {2no)" exp I l(xr-x) ' - n(i:tt)]

where x represents (xl+x2+.......xn)/n and -ocxl<co, i = 1,2, ...' n, Accorulingiy, wlth yl

x, we find that the join p.d.f Y1,Yz .'....'Yn is

n( l/Ja2no)" exp [ -(nyy;y2-......Yn-Yr)2

2c2
n-

-zL (yry)'- n(yr-p)'

dyr < o i=I2,3......n. The quotient of this join p'd.f and the p,d.f

G l1S""f-t exp [-n(y1-p)2]

of Yr=X is the conditional p.d.f ofYz, Y: ...' Yn giveir Y1=al

where q-(nyr-y:-......y"-yr)2+I(yr-yr)2. Since this is a join conditional p.d.f it must be, for all o

>0, that

J-......... f {n tu^lt")*r exp (q/2o2)dy2.....dyo=l

Now consider

nS2: l(Xt-X)2
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: (nt1 -Y2-.......Yn)-l)2 + I(ViV',)'? = q

The conditional moment gsneraing function of nsz/d2 = Q/c2, given Y1:y1 is

E(e'a io2ly,;=..J-.......... .J- {n trl{ln"f'' exp [-(i-2t)q] dyz...dy"

: ( 1)"-''-f .......-J- G-ti-z0h'1v2 x exp [-(1-2t)qdy2.....dy"]

1-21 2 rcs 
z 2c 2

Where 0<l-2t, or t<Y2 . However, this integral is exactly the same that of the conditional p.d.f of

Y2,Y3......Y'. given Y111 with # replaced by o2llt-29>O and thus must equal 1. Hence the

conditional moment generating function of ns2/o2, given Y1 : yl or equivalfficy X: i, is

E(eh'2/o2ln : g2t)-(n-r) 12,t<l/2

That the conditronal distribution ofns2/o2, given X:x, is X2(n-1). Moreover, sinco it is clear that

this conditional distribution does not depend, upon i. X and 52 are stochachatically independent.

Io summarize we have establishcd, in this section, three important propcrties of X and 52 when

tlre sample arises fronr a distributi,.rn which is n(p.ol):

(a) X is n(p,o2ln)

(b) ns2/o2 is X21n-11

(c) X and 32 are stochastically independent.

Expectation of Functions ofRandom Variables

5.8 Expnc.rrrous or FuNcrroxs or Rlr'quou Vanrlnr,Bs
'Iheorem

Let X;,X2.....X,, denote random variables rhat have mfftns pI......pn and variances o21

.......ozu. Let pi; i*j denote the correlation coefficient of Xi and Xj and l* kr.....Kn denote real

constants. fhe mean and the variance ofthe linear function

y: n2. 
k1x;

are respectivcly

F.=nZ,kiPi

2oz
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and o2 y= 
n I,k'o,t+2l Ik;kio;oi

r<J

corollary Let Xr,X2......X" denote the items of a random sample ofthe variance of y= " tr k x
are respectively o, : ( "XlK 1 p and ol
Example 3

I-.et x= 
n r, )un denote the mean of a random sampre size firom a diskibution that has

rnean p and variance o2. In accordance with the corollary, we have lrx = r; x,i o): p and o2x
: o' " 2,11/o;t= o2ln. we have seen, in section 4.g that if oru sarrple is form a distribution that
isn(p,o2),thenXisnlpdny.itisinterestingthatpx=pardo=owhetherthesamgteisor

not from a normal dishibution.

5.9 LIMITING DISTRIBUTIO.NS

if X is the mean of a random sample x1,X2,.....)L fiom a distibution that has the p.d.f

/(x) -1, O<xci,

= 0 elsewhere

the moment generating function of X is given by [M(t/n)]n, where

M(t) = J' e,* dx = e,- 1 , t*0

t

:\, t =$

E("*)-(ea!,_ bc0,

{un)

:1, r-0

Fniil =.*1t 1 e-n*22 dw

iG./2"

for the dishibution function of the mean Xn of the raridom sample of the size n from a normat

distribution with mean zero and variance I

Definition

Let the distribution firnction Fn (y) of the random variable y. depend upon n, a positive
integer. If F(y) is a distribution function and if lim F"(y) : F(y) for wery point y at which F(y) is
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n-) co

' continuous' then the random variable Yn is said to have a limiting distribution with disribution
function F(y)

Example

kt Y" denote the nth order statistic of a random sample XtXz._.,X" from a distribution
having p.d.l

l(x) : I/0, O<e<oo,

= 0 elsewhere

The p.d.f of y" is
g"(y)=n/-rl6", 0.y<0,

= 0 elsewhere,

and the distribution function of y, is
Fn 1y) = 0, y<0
: 

oJ 
y'm-r 

dz : (y/o)n, OSy<e,-0--

=1, 0Sy,<co

Then

lim Fnfu) =0, -co<y<g,

n--+co

=1, 0<y<oo

Now F(y) =0 -cocy<B

=1 0Sy<o

is a distribution function

Exemple

Let {n have the distribution function

F"(ll : _..,J* 1 e-n*z dw

Vvn\D"

If the change ofvariable v: {nw is made we have
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r4fl=fnu61e'D16u -'

ClearlY'

lim Fn(x) = g;'g
,i:::ii ' 

--'' .r. l

n -> oo = 1/2i4
= I, i>0

,I(x)r,Q'x<o ,

:1,r>0

is a distrib,rtion function and lim Fn (i) : F(i) at wery point of codinuity of F(x)'

x -+co

Accordingly the random variable Xn has a limiting distibution with distribution function

Ff). Again this limiting distribution is degenerate 8nd has all the probsility at thc one point

x=0

Example

The fact that limiting distributions, if they cxist carmot general bo determined by taking

the limit of p.d.f will now be illustratod let Xn have the p'd'f

./(x) = 1, y =)+lln
: 0 elsewhere

Clearly, lim /n1";a 6*' all values ofx' This may suggest that x ";
n-> ca

Fn(x) = g x<2+1/r1l

- 1, x 22+lln'

and

lim/n(x)=0,x<2

lF> co

=1,x22

Since
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F(x) = 0, x<9,

=l, x>J,

. is a distribution functioru and since lim /n(x) = F(x) at all points ofcontinuity ofF(x), there is a
limiing disbibution of I with dishibution function F(x)

5,10 Srocu,lsrrc CoNvERGENCE

IteOrern

Let F"(y) dcnote the dishibution firnction of a rrndom varieblc yn whose dishibution
depends upon the positive integer n . IJt c denote a consrrnt which docc not depend on n . The
random variable Yo converges stochssticalry to the constant c if and only i{, for ever e>0, , the

lim P(lYn-cl<6) =1.

n->c[

@
--+i+P{tYn-.e}|-<

Proof : Let

tim P(lyn+l<efl. for every

n_>(r

We have to pmve that the random variable Yn converges stochastically to the constant c. That
is we have to prove that

lim F"(y) = 0, y<c,

n->d, =1, y>c.

If the limit of R0) is indicated, then yn has a liniting dirhibution with distibution
function

F(y) = 0, y<c,

= 1,y) c.

Now

Pr( | yn-ci<€) = F" [(c+€-J-F"(c-€),

where Fn [(c+e ]-l is the left-hand limit of Fn(y) at ]-c+€. Thus we havo
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I= lim Pr (Y,rc<e): lim < Fn [(c+e)-]-lim Fn(c-e)

n->cr n->ct n->g

Because 0 < Fn(y)< 1 for all values of y and for every positive integer n, it must be that

lim Fn(c-e) =0, Iim Pn[(c+e)-]:l

n->g n->(l

Since this is true for every e>0, we have

lim Fn(y) = 0, ycc,

n-><r -1, yta,

Now, we assume tha!

limF"(y)-0y<c,

tl->d,

I = Ytt'

We are to prove that 1im Pr(lYn - cl <e):l for every e>0.

Because n-+6

Pr(lYn-cl<e)=r. [ (c+e) -] -pn(c-e),

and because it is given that lim F"[(c+e )']=1,

lim F"(c- e )=o)'

n->ct

for every e >0, we have the desired result. This cornpletes the proofofthe theorem.

That is this last limit is also a necessary and sufficient condtion foi the stochastic

Convergence ofthe random variable yn to the constant c

Exaruple

Let Xn denote the mean of a tandom sample of size n from a distribution that has a mean

p and positive variance ct. Th"n the mean and variance of & are p and J/n. Consider for

every fixed e>0, the probability
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Pr (lx'-ppe) : Pr(PL-plxo /{n),where k : e {n/o.tn accordance with the inequaliry of
Chebyshev, this probability is <I/k2 -a2/n e2. So for every
fixed e>o, we have

lim Pr (Xn-plle) < fimd/ne2:0

n-+€

Hence \ converges stochastically to p if oz is finite

5.1I LIMITtr.{G M0MENT _GENERATING FUNCTIONS

Resuli:

[-et the random variabie yn have the disfribution function F,,(y) and th4e moment
generating function M(!n) that exists for -fi <t<h for a n. If there exists a distribution
functions F(y), wirh corresponding moment generating function M(t), defined for rtr $1,<b
such the

lim M(t;n): M(t); then y"

n->co

has a limiting distribution with distribution function F(y)

Example 1

I-et Y,, have a distribution that is b(np). Suppose that the mean p.= np is the same for
every n; that is p:pr./n where p is a constant. We shall find the timiting distribution of the
binomial distribution, when p=p/1, by finding the limit of M(t;n). Now

M(t;n) = !1srr"; =[( 1-p)+pet1. = [ I +F.(er_ 1)] n

n

for all real values oft. Hence we have

lim M(1;n; =.u(e!l)

n-+co

for all real values of t. since there exists a dishibution, narnely the poisson distribution rvith
mcan p, that has this moment generating firnction {u("t-t}
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then in accordance with the theorem and under the conditions stated, it is seen that Yn has a

limiting poisson distribution with mean pr

Example 2

Irt Z; be X,1n). Then the momsnt generatiDg function of 4 is

(1-20f'/', t<l/Z. The mean and the variance of Z'n arc respectively n and 2n. The limiting

distribution of the random variable Yn{z--n)/!2n will be investigated. Now the moment

generating function of Yn is

M(t;n) = E { exp[t(2,'-n)]]

ftAl-n -, tlrJ
E(e

= exp [-(t!z/n) (nJ 2)10 -2t/ E:d -n', 2, t<',1?,! 2

Thi s may be rwitten in the form M(t;nf(e'J/n -t'{Iii11 4 
, sl-+n .

In accordance with Taylor's formula, there exists a numbe.r e(n), between 0 and d2ln, such that

effi-t+r.'D 6+ltz(d-Ad2+"8(n\/6(t,l-Z/n)j

Ifthis sum is substituted for erf2h in the last expression for M(t;n), it is seen thal

M(t:n) = (l -t2ln+y(n)/n) -xl2

where

3{n- {n- 3n

Since e(n) -r0 as n -+ co, then lim ry(n)=O for every fixed value oft.

Also lim M(t;n) = esz

for all real values of t. That is the random variable Yn 4z^-nY.{fr has a limiting normal

distribution with mean zero and variance l.

.lzo

5

y1n) = €F e* - {i3 - 2t4e4n)
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5. 12 TIIE CENTRAL LIMIT THEOREM

Staternent : rrt xrxz......Xn denote the iterns of random sampre fiom a distribution that ha6
mean p and positive variance d. Then the random variable yn { rl'X1t_np1 71ft = {ine<n_p/o
has a limiting distribution that is normal with mean zero and variance I
Proof : we assune the existence of the moment generating functionM(9: p1"t-r, -h<t<[ of the distribution.

The fturction

m(tFE[et(*-t']l : e-]'M(t)

also exists for --h<t<h. Since. m(t) is the momerrt generating firnction for X. p, it must follow thatm(0!1, mr1gl=6(X-p)={ andm'r (0FEt6_p)11= d
By Taylo/s formula, there exists a number ( between 0 and t such that

m(tFm(O) +M I (O)t+mtre)C/2

- 1+m-(e)t2lz

ff o2t2/Z is added and subtracted, then

m(t) = I +a2fl2+ 7m,,(e1-d1fl2

Now consider M(t;n), where

u(un) =Et.*{Xa!r)l

"{.
= E[exp(txr+) exp(rX2_p) ;......exp (t&_]rl

oVn o{n 
",.fi-

= E[exp (tXl -p)]......Etexp(u<n_p)l

oVn o{i'-
= {E[exdtxl)]]n

o{n

= tm(vc{n}lq -h<Vcr{R

In m(t) replace t by Vofi-to obtain
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m(Y<rfi)= 1 +t2l2n+Jm\e;-o2lf /2nd

where now s is between o and Uo{n-with -tro{<t<ro{n

.\ccordingly

M(t;n) = { I +!2n-l[m"1eyd]l] n

^,2n c'

Since mn(t) is continuous at F0 and since e-+0 as n-r.o, we have

lim [mn(e )-c2]:g
'fhr.rs, lim M(t;n) = et2l2

for all real values of t. This proves that the random variable Y"-fiXn-p/cr has a limiting normal

distribution with mean zero and variance 1.

Result

Let Fn(u) denote the distribution function of a random variable Un whose distribution

depends upon the positive integer n. let Un converge stochastically to the constant c*0. The

random variable Un/c converges stochastically to 1.

Theorem

Let Fn(u) danote the distribution function of a random variable Un whose distribution

depends upon the positive integer n. Further, let Un converge stochasticalty to the positive

constant c and let Pr (Un<0) = 0 for every n. The random varicable {U].onu".g",
stochasticcally to {c.

Proof. We are given that the lim Pr | {U"-"- {"pO = 0 for every e>0. We have to prove that the

lim Pr (l un - cl > €1)=0 for every €r>0. Now the probability,

Pr(lt I"-cl>e) = Pdl./U"-{c))ff+VtPcl

=P(lUn-{cPe I iur*{cl

>P(\/Un-\/cl>s\/ c)>0.

if we let e' : e/{lnd if we take the limit, as n becomes infinite, we have

0=lim Pr(lUn-cpe)> lim Pr(1ffi-r6pe';:O
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for every el>0. This completes the ptoof.

Hence the proof

E)(ERCISES

(l) Show that

52: I rln (Xi-X12= 1 y r X2rX2,

.nn
WhereX=rX"Xy'n,

(2). Find the probability that exactly four items of a random sarnple of size 5 from the
. distribution having p.d.f . (x){x+r/2, -l<x<I, zero else where €xc€ed zero,

(3). Let xr,xz be a random sampre from the distribution having p.d.f (xf-2x, 0<x<1, zero

elsewhere. Find pr(Xr/)(f V2).

(4) If the sample size is n=2, find the constant c so that s2rc6x1_X2;2.

(5). If x1 = i, i:1,2,....,n, compute the values of x -Xxi/n and

s2=l(x I -x)2/n.

(6) Let yi=a+bxi, i:1,2,...,rl where a and b are constants. Find y-_ly"/n and s2)r:I (i-y)2/n
in terms of 4 b, x {xiln and s2* =X(xi-x)2/n.

(7). Let X have a p.d.i /(x)-tl1,1=1,2,3, zero elsewhere. Find the p.d.f of y=2X+1.

(8). lf f (x1,x)12t3)xr+xz(l/3)2 -xr -x2,(xr-x2F(0,0),(0,1 ),(1,0),0,1)

zero elsewherg is the joint p.d.fxr=xz find thejoint p.d.f. og y1=x1-x2 and y2=x;+x2

(9). let X have the p.d.f f(x): (/z )x, x=1,2,3..;. zero elsewhere. Find the p.d.f of y:x3.

(10). Let X have the p.d.f /(x) = f79, gj*4, zero elsewhere. Find the p.rl.f of y :Xl
(l l) If the p.d.f of X is /(x)=2x e'd, 0<x<.o, zero elsewhere determine the p,d.f of y= X2.

(12)' Let xr, x2 be a random sample from tlre normal disnibuteb n(0,1). show thar the
marginal p.d.f of yr = [,/X2 is the Cauchy p.d.f. gr(ytFl/r(l+yr2), {<yr<o

(13)' Let the stochastically independenr random variables xr and xr have the same p.d.f (x)
=l/6, x = 1,2,3,4,5,6 zero elsewhere . Find the p.d.f of y=X1+X2. Note under appropriate
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assumptions I lthat Y may be inte{preted as the sum of the spots that appear when two

dice are cast.

(14). Let Xr and X: be stochastically independent with normal disuibution n(6,1) and n(7,1),

respectively. Find Pr(X1>X2). Hint. Write P(Xr>Xz) = Pr(Xr-Xz>0) and determine tho

distribution of Xr-Xz.

(15). fet X:,X2,...X. denote n mutually stochastically independent random variables with the

moment generating functions M1 (t),M2(0,....M"(t), rcsp€ctively.

(a) Show that Y:krXr+ktX:+...;fk1Xp , where kr,kz,...kn are real constants, has the moment

generating tunction M(r)[ Mi(kit)

(b) If each ki -l and ifXi is poission with mean p,i =1,2,....n prove that Y is poisson with

mean pl+...+pn.

(16). Let Xn denote the mean of a random sample of size n from distibution that is n(p,o2)

Find the limiting the distribution of Xn.

(17). Let Xn have a gamma distribution with parameter c:n and p and p is not a function of n.

Let Y, = )tn/n. Find the limiting distribution of Yn.

(18). Let Znbep(n) and let Wn =Znln\./Find the limiting distribution of Wn.

(19). t.et X be X2(50). Approximate Pr(40<X<60).

QUESTION PA?ER PATTIRN

PARr-A(5x5=25mrrks)
Arlswer FIVE Question out of EIGIIT Question

PART-B(5r15*75marks)
Answer F1VE Question out of EIGHT Question
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